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Why model HVAC systems? 

• Model smoke movement in systems with 

recirculation

• Exhaust and supply behavior changes due to 

pressurization from a fire

• Smoke movement through ducts
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FDS v5.5 HVAC capabilities

• Define an inlet or outlet mass (or 

volume) flow with a predefined flow 

rate, temperature, and species.

• Simple quadratic fan model to adjust 

flow rate based on the local pressure.

• Cannot couple an inlet to an outlet

• Cannot couple a single fan to multiple 

inlets or outlets.
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Why not mesh ducts?

• Expense - Determining 

form losses requires fine 

resolution of duct fittings

• Validity - User would need 

to validate that accurate 

losses were determined for 

all HVAC components 
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Solution approach

• Network HVAC solver 

based on MELCOR 

algorithm (US NRC 

containment safety code)

• Indirect coupling to FDS
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MELCOR conservation equations

• Conservation of Mass

• Conservation of Energy

• Conservation of momentum
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MELCOR momentum equation
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pressure

n is the time step

n- is the previous iteration value

n+ is the previous iteration if flow direction the 

same or 0 if flow direction changes

Since K is a function of flow direction, the 

linearization aids in stability when pressure 

forces are low
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Extrapolated pressure (1/2)
• For a duct connected to a 

room, the end of time step 

pressure is a function of all 

the flows in and out of that 

room and any other room 

which is connected to it.

• To account for this, a 

prediction of the end of time 

step pressure is made using 

the velocities of any duct that 

is connected to the room 

directly or indirectly

Duct flow into any un-

shaded compartment 

will impact the pressure 

in every other un-

shaded compartment
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Extrapolated pressure (2/2)
In the divergence routine FDS computes:

where m is a pressure zone
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Fully discretized momentum

• If i or k is an internal node, no pressure 

extrapolation is done and the pressure 

is solved for directly

• Densities are upstream
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Wall BC

• , u, and Y are coupled

• Iterate solution

• In a typical calculation, 

values rarely change quickly 

and little iteration is required
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Solution method

1. Determine , T, Y, and P at external 

duct nodes (average over VENT)

2. Solve for u

3. Update , T, and Y at internal nodes

4. Check for convergence of u and that 

net mass flow is 0 for internal nodes

5. Return to step 2 if un-converged



HUGHES ASSOCIATES, INC

FIRE SCIENCE & ENGINEERING

Coupling to FDS pressure solution
• Pressure solution for HVAC is not 

coupled to pressure solution for FDS 

domain

• Typical FDS time step is << 1 s

• Momentum length of ducts limits rate of 

change of duct solution

• Volume flow at duct connections to 

domain change “slowly” and error from 

not coupling will be small
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Verification Case 1

• Green : 0.3 m3/s exhaust

• Red duct: Loss of 16

• Orange duct: Loss of 4

• Ducts 0.1 m2

• FDS = 2
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Verification Case 2

• Bottom half of compartment Species 1

• Red / Blue + Green / Yellow are 

Suction / Discharge
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Verification Case 3
• Left half at 313.15 °C, adiabatic walls

• Top duct – 0.1 m2, right to left, flow unspecified

• Bottom duct – 0.1 m2, left to right, 0.1 m3/s
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ASHRAE Fundamentals #7
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Dust 

Collector Fan 

Metal working exhaust system:

3 pieces of equipment with a dust 

collector

Quadratic fan curve plus fitting 

and duct losses

Duct
ASHRAE

P

FDS

P

Error

%

1 739 731 -1.1

2 458 449 -1.9

3 281 282 0.3

4 124 124 -0.2

5 746 744 -0.4

6 32 33 3.3

7 318 321 -0.5

Note: ASHRAE has fixed density in 

ducts, FDS density varies slightly 

due to pressure drops.
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Confined Space Facility (1/3)
• 23 compartments

• 4 levels

• 20 wall / ceiling openings

• 129 HVAC components

• Supply system takes suction from fan room and discharges to all 

compartments

• Exhaust

▪ Takes suction from all compartments and discharges to fan room

▪ With damper re-alignment allows fresh air to be drawn into fan room

• Smoke control takes suction from nav room and discharges 

outside
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Confined Space Facility (2/3)
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Confined Space Facility (3/3)
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Test Descriptions
• 4-10: 1.05 m diameter diesel fire in fire room

• No HVAC

• All internal closures opened, no external closures opened

• 5-14: 0.68 m diameter diesel fire in fire room

• Supply and exhaust fans on then off at 1 minute

• Frame bay ducts installed

• One external closure opened

• Most internal doors closed (many with ventilation grills)

• 1 minute realign exhaust and turn on smoke control
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Model Inputs

• HVAC losses taken from ASHRAE 

tables based on as-built drawings of 

ductwork

• Fire size based on load cell under fuel 

pan (measurement very noisy)

• Fan curves from manufacturer’s data 

adjusted for fan frequency
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Upper Level Visibility
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Door / Hatch Velocities
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Duct Velocities
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Filtration

• Filters, especially HEPA, 

prone to clogging from soot

• Flow loss can be expressed 

as a clean loss (no loading 

loss) plus a loss due to 

loading (Kloading)

• Where Ln is the species 

loading and cn is a multiplier
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Filtration

• A filter implemented as a special class 

of a duct node

• Filter removal rate computed as

• Where en is a species removal 

efficiency

• Removal rate is added as a loss term 

to the duct node mass conservation 

equation

nnddddn ZAuL e ,=
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Filtration Example

• 1 m3 compartment with 

1 % soot mass 

fraction.  

• HVAC system with a 

100 % efficient filter 

flowing 0.2 m3/s
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Aircoil
• Heating / Cooling within a duct

• Theoretical maximum heat 

exchange when exiting air 

temperature = exiting fluid 

temperature

• Actual heat exchange given by 

an efficiency,h.
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Aircoil

• An aircoil is implemented as a 

component of a duct

• The downstream node energy balance 

(used to compute node temperature 

and density) is updated to reflect heat 

removal / addition of the aircoil
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Aircoil Example

• 1 m3 compartment

• HVAC system with a 1 

kW coiling coil, flowing 

0.2 m3/s
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Potential additional capabilities

• Transient operation of dampers with 

position dependent losses

• Condensation / evaporation on filters

• Transient operation of fans

• Spin up / spin down

• Variable motor speed

• Duct wall heat transfer


