Putting the Smoke into Smokeview

Recent Updates and Enhancements

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce Glenn P. Forney Fire and Evacuation Modeling Technical Conference August 15, 2011

Overview

- Improve algorithms for visualizing smoke
- Exploit the GPU (video card) to perform computations more efficiently
- Make better use of color for examining FDS results

Problem or Opportunity? What do we do with all the numbers?

What can we do with all the numbers!

Cray 1 12 Mflops Android smart phone 36 Mflops NIST Fire Cluster 2240 Gflops

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce 186,000 speedup!!

Lighting/Shading

Lighting

 Adds more realism to 3D scenes Computed using normal vectors light source direction vectors

Observer

NĽ Unlit National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Evolution of Smoke Visualization Methods

Technology Administration, U.S. Department of Commerce

Volume Rendering Equation – Radiation Transport Equation

Orient planes to be most perpendicular to line of sight

 ΔX

Beer's law I/lo=exp(-ks∆x)

- Δx distance between adjacent grid planes
- S_i soot density
- α_i opacity
- •FDS computes α for each grid node •Smokeview combines α 's using the video card

3D Smoke Correcting α

FDS computed:

$$\alpha = 1 - \exp(-ks\Delta x)$$

Smokeview computed:

 $\hat{\alpha} = 1 - \exp(-ks\Delta \hat{x})$

Solve for exp(-ks):

$$(1-\hat{\alpha})^{1/\Delta \hat{x}} = \exp(-ks) = (1-\alpha)^{1/\Delta x}$$

Solve for $\hat{\alpha}$

$$\hat{\alpha} = 1 - (1 - \alpha)^{\Delta \hat{x} / \Delta x}$$

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Problems can occur for large grids (ΔX small)

More refined grids \rightarrow smaller $\Delta x \rightarrow$ smaller $\alpha \rightarrow$ increased error

NIST	
National Institute of Standards and Technology	
National Institute of Standards and Technology	

Technology Administration, U.S. Department of Commerce

Solution: Integrate across entire mesh rather than one grid slice

$$\alpha = 1 - e^{-\int ksdx}$$

Use 3D slice files (full precision)
Compute a line integral for each pixel using the video card (GPU)

Color – use a transfer function to map temperature to color
Opacity - integrate soot densities

Image plane

scene

NIST Time: 0.05

Technology Administration, U.S. Department of Commerce

96x96x64 16 meshes 300 frames 21 GB 1-3 minutes load time

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Challenges

- •Memory
- Computation
- Data load time

Solution Approaches

compress data
use the video card (GPU)
load data in the background (while it is being displayed)
load data as it is required
Treat Smokeview more like FDS

Using the New Method

• Add following keyword to the &DUMP line

DT_SL3D=xxx

(where xxx is desired output time step)

- Add following &SLCF lines to case &SLCF XB=..., QUANTITY='TEMPERATURE', CELL_CENTERED=.TRUE./
 &SLCF XB=..., QUANTITY='DENSITY',SPEC_ID='SOOT',CELL_CENTERED=.TRUE./
 where "..." are the bounds for your simulation domain
- In Smokeview load file type labeled "3D smoke (volume rendered)"
- In the repository look at cases in Verification/Visualization: plume5c, mplume8, vis_test1, vis_test2 or vis_test3

Coloring Data

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Rainbow Colorbar

Discontinous Colorbar

Summary

- Improve algorithms for visualizing smoke
- Exploit the GPU (video card) to perform computations more efficiently
- Make better use of color to examine FDS data

New Smokeview Capabilities

- New more flexible method for visualizing smoke
- Large cases (and small) may be visualized in "batch" mode one frame at a time
- Smokeview may be run remotely (using Linux command Xvfb)
- Smoke may be visualized immediately while the data is loading
- NI Smoke may be colored arbitrarily with user specified colorbars