FIRE MODELING WITH CAD/GE1 TECHNIQUES

By Mr. Yat Fan Pin & Dr. Dicken Wu Parsons Brinckerhoff 16th August 2011

Table of Content

- Introduction
- How to prepare the CAD/GE1
- The Benefits for Commercial Projects
- Cases Studies
- Conclusion
- Way Forward
- Q&A

Introduction – Background Information

- Fire Engineering approach is needed when the design could not fully comply with the local fire safety codes.
- Numerical simulations prove the design performance.

Introduction - Visualization

Present the engineering design to general public

- Presentation form Engineers view
 - Boundary Conditions
 - Initial Conditions
 - Mesh cell size
 - Domain/mesh configurations
 - Fire properties
 - Solver
 - Duration of Simulation
 - Turbulence Model
 - Tenable Environment

Ē

- Presentation form General Public view
 - Fire Load and Location
 - Tenable Environment
 - Geometry Details

Introduction – CAD/GE1

- SmokeView geometric description file (.GE1)
- Improve the realistic level
- Independent to the FDS mesh
- All geometric details
- Modified geometric anytime

How to prepare the CAD/GE1

- 1. Add following in FDS Input File: "&DUMP RENDER_FILE='XRL7.ge1'"
- 2. 3D Geometry CAD Model (3D Face)
- 3. Convert 3D CAD to FDS input file with Pyrosim
- 4. Modified the FDS Model for analysis
- 5. Load the GE1 CAD file

CAD1/GE1 for Large Scale Complex Geometry Projects

The Benefits for Commercial Projects

- Communication
- Understanding for General Public
- Avoid over Detail FDS Model
- Save Computer Resources
- Avoid Re-run
- Efficiency

Case Studies 1 - Large Scale Hub Station in Hong Kong

- 4 lines interchange station expansion
- Parsons Brinckerhoff is leading the building services BIM design
- 19 FDS simulations for the Fire Engineering approach
- Station Concourse coverage approximately 160m x 120m x 15m

Complex geometry in concourse Fire and Safety Simulation Evacuation Simulation

Case Studies 1 - Large Scale Hub Station in Hong Kong

Video

FDS model

CAD/GE1 Model

Case Studies 2 - Platform and Fan Track Area For High Speed Railway

- One of the largest multi-track underground platform and fan track area in Asia
- Track crossover included
- Parsons Brinkerhoff conducted fire engineering study to analyse the smoke control system.
- The total area is around 800 m x 200 m x 10m
- 8 FDS simulations for the Fire Engineering approach

Case Studies 2 - Platform and Fan Track Area For High Speed Railway

Video

FDS model

CAD/GE1 Model

Conclusion

- CAD/GE1 is an user-friendly function for FDS post-processing.
- Architectural 3D models are ready.
- With Pyrosim, the ge1 will be generated for each simulation.
- Enhanced the result visualization.
- Improved the communication and understanding.
- Balance the visualization demand and simulation resources.

Way Forward

- There are few suggestions for the CAD/GE1 function
 - Improving the integration with "texture" function
 - Display "Hole"
 - Match the "Vent" setting with FDS model

Thank You!

Q&A