engineering laboratory

Evaluating the Predictive Capability of Fire and Egress Models

Richard Peacock, Bryan Hoskins, and Paul Reneke Engineering Laboratory National Institute of Standards and Technology U.S. Department of Commerce

Different Needs and Responsibilities

Model users

- Applicability of model and its validation to problem
- Model developers
 - Mathematical verification, range of experimental validation
- AHJs
- Others
- Broader overview than yesterday's talks from the model developer's perspective

Consensus Standards

- NFPA 805, "Performance-Based Standard for Fire Protection for Light Water Reactor Electric Generating Plants" requires validated predictive models
- ASTM standards provide methodology for fire model evaluation
 - ASTM E 1355 defines methodology for model evaluation
 - ASTM E 1472 defines documentation requirements
 - ASTM E 1895 assists model user in identifying model limitations
- ISO 16730:2008 provides a framework for assessment, verification and validation of all types of calculation methods used as tools for fire safety engineering.
- IMO MSC/Circ. 1238 includes guidelines for evacuation analysis for passenger ships

Data, Data, Data (and Documentation)

- Model documentation forms the core of needed information about a model
 - Technical documentation provides in-depth explanation of scientific basis of models
 - User's manual provide reference to inputs and output
 - V&V guides detail available code verification and comparisons with experimental and other data
- Bulk of validation efforts are comparison with experimental data
 - NRC NUREG 1824
 - FDS and CFAST Validation Guides built on 1824

Qualitative (and Quantitative)

- Typical comparisons between models and experimental data quoted from actual papers
 - "good to excellent"
 - "favorable"
 - "quite satisfactorily"
 - "reasonably accurate" "none of the models did well"
 - "achieved in a qualitative sense"
 - "well predicted"
 - "good, fair, or excellent"
 - green, yellow, or red
- While qualitative comparisons serve a purpose, engineering applications require quantitative comparisons

Qualitative (and Quantitative)

- For egress/movement models, IMO specifies a series of component and qualitative tests.
 - Walking speed in corridors and stairs
 - Exit flow rate
 - Exit route allocation
- Common sense tests to provide a level of confidence that model is operating as expected.

Qualitative (and Quantitative)

- ASTM E 1355 for fire models only provides general guidance on verification and sensitivity analysis.
- Model documentation includes a wide range of detail and topics.
 - CFAST includes chapters on model structure and sensitivity analysis
 - FDS has entire volume on verification that includes numerous analytical tests
- Fire modeling guides are ripe for further guidance on verification

(Qualitative and) **Quantitative**

(Qualitative and) Quantitative

- Bulk of validation efforts are comparisons to experimental data
 - Nearly 1600 comparisons of FDS with 42 different test series and growing
 - About 800 comparisons of CFAST with 12 different test series and growing
 - FDS_Evac compared to a number of different evacuation geometries and scenarios

 Significant efforts required to obtain high quality data compared correctly to high quality simulations

Data, Data, Data, and more data

 Data for comparison exists; high quality data is more scarce

- http://fire.nist.gov/fds
- http://cfast.nist.gov
- http://www.nist.gov/el/fire_research/egress.cfm
- Range of data is limited for many fundamental submodels
 - Heat transfer to objects and surfaces during a fire
 - Vent flows, particularly mechanical ventilaiton
 - Stairwell data for tall buildings; elevator data
 - Human behavior

Fire Modeling Data

Building Evacuation Data

Data, Data, Data, and more data

 Quality of comparisons depends on quality of underlying data and model simulations

 Blind experiments useful exactly once; better to have numerous welldocumented data sets

What you do with the Data, and more data

- How do you compare model and experiment?
 - Peak values
 - Average values
 - Range of relative differences
 - Time-integrated values
 - Norms for magnitude and functional form
- Guidance on which is appropriate for a given application is limited and may depend on application
- Research on expressing agreement including uncertainty is ongoing

Standards, Documentation, and Data

- Consensus standards exist and continue to evolve; need more effort for movement models
- Documentation by model developers is key to V&V efforts
- Both qualitative and quantitative assessments contribute to V&V
- Data exists, but significant data needs still exist