PROCEEDINGS, Fire and Evacuation Modeling Technical Conference (FEMTC) 2014

Gaithersburg, Maryland, September 8-10, 2014

PERFORMANCE ANALYSIS AND SHARED MEMORY
PARALLELISATION OF FDS

DANIEL HAARHOFF, LUKAS ARNOLD

Jiilich Supercomputing Centre

Institute for Advanced Simulation, Forschungszentrum Jiillich GmbH
52425 Jiilich, Germany
e-mail: lL.arnold @fz-juelich.de

ABSTRACT

Fire simulation is a complex issue due to the large
number of physical and chemical processes involved.
The code of FDS covers many of these using various
models and is extensively verified and validated, but
lacks support for modern multicore hardware.

This article documents the efforts of providing
an Open Multi-Processing (OpenMP) parallelised ver-
sion of the Fire Dynamics Simulator (FDS), version
6, that also permits hybrid use with the Message Pass-
ing Interface (MPI). As FDS does not allow for ar-
bitrary domain decomposition to be used with MPI,
the amount of computational resources is limited. An
OpenMP parallelisation does not have these restric-
tions, but it is not able to use the resources as efficient
as MPI does.

Prior to parallelising the code, FDS was profiled
using various measurement systems. To allow paral-
lelisation the radiation solver as well as the tophat fil-
ter for LES equation where altered. The achieved par-
allelisation and speedup for various architectures and
problem sizes were measured.

A speedup of two is now attainable for common
simulation cases on modern four-core processors and
requires no additional setup by the user. Timings
for various combinations of simultaneous usage of
OpenMP and MPI are presented. Finally recommen-
dations for further optimisation efforts are given.

PARALLELISATION

Parallelism in software has a long history that has
both driven and been dependent upon the available
computational hardware. The rapid rate of hardware
development provides an ever-changing playing field

upon which software emerges and vanishes at an even
quicker pace. Trying to utilise the given resources ef-
fectively while keeping software functional and main-
tainable is a challenge.

This section provides a compact overview of
shared memory computer systems, the OpenMP ap-
proach and the measurement of parallel performance.

Shared Memory Approach

The oldest, most established tool for parallelisation
is most likely the message passing interface (MPI,
[mpi]), a distributed memory approach. With MPI, the
goal is to decompose the work to be performed in its
entirety and spread it to multiple processes. Whenever
data or results are needed from other processes, MPI
allows these to be exchanged using explicit messages.

The orthogonal approach to this are shared
memory approaches, the most prominent framework
being Open Multi-Processing (OpenMP or OMP,
[openmp]). Here all processes have access to the
same memory and data can therefore be shared with-
out message passing. This of course necessitates that
measures are taken to prevent two processes from ac-
cessing or modifying memory simultaneously. As a
result OpenMP requires a more fine grained paral-
lelism than MPL

Since the epoch of ever-rising processor speeds is
over [Geer 2005]], Moore’s law has only held true due
to the introduction of multi-core processors. This of
course has led to a prevalence of shared memory sys-
tems using shared-memory parallelisation.

With the even longer running trend of building
high-performance systems by clustering commodity
hardware, a situation has emerged where the hardware
exhibits nested levels of parallelisation. A schematic

overview of a cluster setup is given in Figure[I] This
structure of densely-packed shared memory nodes
lends itself to being mirrored in software by using a
hybrid of MPI and OpenMP; using MPI to spread pro-
cesses (ranks) across nodes which communicate via a
network, and OpenMP threads to further parallelise
the execution of each MPI rank within a shared mem-
ory space. In general it is best practise to distribute
the MPI ranks on the individual sockets to ensure an
uniform memory access, as in common computer ar-
chitectures the memory is split among the sockets and
local to an individual socket.

/ memory

node

\ socket socket /

node interconnect

Figure 1: Schematic outline of a compute node. It contains
two sockets, each hosting four compute cores. Al-
though the memory is attached to each socket, it
can be accessed by all sockets; this results in gen-
eral in a non-uniform memory access (NUMA)
and therefore lower performance. All nodes are
connected via a node interconnect. Good prac-
tice is to distribute the MPI ranks over the sock-
ets and spawn an OpenMP thread on each of the
socket’s cores.

While initially promising, studies have shown
the added complexity of the hybrid approach
only pays off in a limited set of use cases
[Rabenseifner et al., 2009]. And while the pragma-
based model of OpenMP allows for relatively easy
parallelisation of existing software, the coarser paral-
lelisation offered by domain decomposition and MPI
will usually be well worth the additional programming
effort.

It should be noted that MPI 3.0 supports shared
memory constructs. At the time of writing, the support
for this feature is not readily available in the compil-
ers and MPI libraries and therefore has not been able
to prove itself, which is why it was not an option for
shared memory parallelisation during this work.

OpenMP

The basic concept of OpenMP is to identify execution
tasks (groups of instructions), which are independent
of each other and therefore suitable for parallel exe-
cution. These tasks are then forked on the available
n OpenMP threads (this number includes the master
thread and is specified in the OMP_NUM_THREADS
environment variable). A simplified execution exam-
ple in serial and parallel is given in Figure[2} In gen-
eral each of these threads runs on a computational core
and does not share hardware resources with the other
threads. However, modern architectures require mul-
tiple threads — so called hyperthreading or Symmetric
Mutlithreading (SMT) — to run on the same hardware
to utilize all processing pipelines. After the computa-
tion the threads are joined. The execution continues
with tasks depending on the joined results.

A characteristic situation for OpenMP parallelisa-
tion is a for-loop. If each iteration step is indepen-
dent, every thread computes 1/n iterations. Benefit
can only be gained if the overhead (task fork, non-
uniform memory access, task join) is smaller than the
serial execution. Thus very short loops, in terms of
execution time, don’t scale well.

In contrast to MPI, where the communication must
be explicitly formulated, the parallelisation of a FOR-
TRAN loop may take the following simple fornﬂ
see Listing [I] The implicit OpenMP instructions
are passed to the compiler via pragmas starting with
! SOMP.

Listing 1: FORTRAN code snippet of an OpenMP loop.

!'SOMP PARALLEL DO
do i = 1, length
r(i) = a(i) + b(i)
end do
!SOMP END PARALLEL DO

In this example, the for-loop iterates over two ar-
rays a and b to compute the element-wise sum into
the array r. OpenMP would detect that all iterations
are independent and distribute the work.

The code examples in this article are adjusted extractions from the FDS source code to illustrate the main idea and are not stand-alone examples.

execution time

master —-[task 1 I task 2 I task 3 I task 4 I task 5 I task 6 I task 7 I task 8]'—

serial
execution

thread 2

thread 1

parallel
execution

master —[task 1

task 6 task 8]—

Figure 2: Fork-join model. Shown are two execution modes — serial and parallel — of a sequence of tasks. Each green task group
contains tasks that have no dependencies on each other; i.e. they can be executed at the same time; the blue tasks can
not be overlapped with other tasks. Therefore during parallel execution green tasks can be distributed on other available
threads to speedup computation by overlapping task execution. The overhead in this fork-join modell (red lines) is due

to the task dispatch and the join of results.

The pragma-based approach of OpenMP makes
it easy to incrementally parallelise loops in existing
code. With a lot of the heavy lifting being hidden be-
hind these simple pragmas, the problem lies in ensur-
ing that the compiler is actually doing what the soft-
ware developer expects. Thus most of the effort after
identifying the appropriate loops lies in verifying that
they are parallelised, well load-balanced and not in-
troducing any dataraces.

An example for a simple loop that was parallelised
in FDS can be seen in Listing 2} The loop performs
a standard finite difference where DZDX is calculated
for each cell (line 7) and then used to update the den-
sity RHO_D_ DZDX (this is repeated in all three dimen-
sions) in line 9. Since DZDX and its brethren are local
variables that are written during each loop cycle, they
need to be declared as private (line 2) so as to ensure
correct results and avoid dataraces.

Listing 2: Example for an OpenMP parallel do-loop to
compute field derivatives in parallel, adopted
from divg. £90.

! Compute rhoxD del Z

!SOMP PARALLEL DO PRIVATE (DZDX, DZDY, DZDZ)
SCHEDULE (STATIC)

DO K=0,KBAR

DO J=0, JBAR

DO I=0,IBAR

DZDX = (ZZP(I+1,J,K,N) - ZZP(I,J,K,N)) =
RDXN (I)
RHO_D_DZDX (I, J,K) = .5_EB »

(RHO_D (I+1,J,K) + RHO_D(I,J,K)) = DZDX

[...]
!'SOMP END PARALLEL DO

As both examples represent the ideal cases, in
practical applications some issues require more atten-
tion. The following section illustrates some issues
and challenges of using OpenMP, based on the applied
parallelisation strategies in FDS.

APPLIED PARALLELISATION

This section documents selected parallelisation tech-
niques applied to some routines of FDS. It covers the
tophat filter used in the flow solver, wall loops and
the radiation solver. These cases illustrate common
issues with shared memory parallelisation: loop re-
shape, data races and loop carried dependencies.

Tophat Filter

The tophat filter used for the LES computations con-
sumes roughly one percent of runtime. This does not
make it one of the costliest functions, but it is one that
lends itself to parallelisation as one can see in the de-
gree of parallelisation that was achieved (see Table[3).

In the original version (Listing [3)), the filter is ap-
plied by calling the 1D tophat filter routine (line 17)
along each dimension of the mesh. This incurs a
strided memory access which is detrimental to perfor-
mance. This is why the serial version made copies to
two work arrays (lines 16 and 20).

Listing 3: Original structure of the test_filter func-
tion, adopted form a previous version of source
file turb. £90.

SUBROUTINE TEST_FILTER
(PHIBAR, PHI, PHI_MIN, PHI_MAX)

REAL (EB), INTENT (IN)

REAL (EB), INTENT (IN)
PHI (0:IBP1,0:JBP1,0:KBP1)

REAL (EB), INTENT (OUT)
PHIBAR(0:IBP1,0:JBP1, 0:KBP1)

REAL (EB), POINTER, DIMENSION(:) :: PHI1,PHI2

INTEGER I,J,K

PHI_MIN, PHI_MAX

PHI1 => TURB_WORK11
PHI2 => TURB_WORK12

! filter in x:
DO K = 0,KBP1
DO J = 0,JBP1
PHI1 (0:IBP1) = PHI(0:IBP1,J,K)
CALL TOPHAT_FILTER_1D(PHI2 (0:IBP1),
PHI1(0:IBP1),0,IBP1,
PHI_MIN,PHI_MAX)
PHIBAR(0:IBP1,J,K) = PHI2(0:IBP1)
ENDDO
ENDDO
[...]
END SUBROUTINE TEST_FILTER

SUBROUTINE TOPHAT_FILTER_1D
(UBAR, U, N_LO, N_HI, U_MIN, U_MAX)

INTEGER, INTENT (IN) N_LO, N_HI

REAL (EB), INTENT (IN)
U(N_LO:N_HI), U_MIN, U_MAX

REAL (EB), INTENT (OUT) UBAR (N_LO:N_HI)

INTEGER :: J

! Filter the u field to obtain ubar
DO J=N_LO+1,N_HI-1
UBAR(J) = 0.5_EB*U(J) +
0.25_EB* (U(J-1)+U(J+1))
ENDDO
! set boundary values (not ideal, but fast
and simple)

UBAR (N_LO) = MIN(U_MAX, MAX(U_MIN,
2._EB*UBAR (N_LO+1) ~UBAR (N_LO+2)))
UBAR (N_HI) = MIN(U_MAX, MAX(U_MIN,

2._EB*UBAR(N_HI-1)-UBAR(N_HI-2)))

END SUBROUTINE TOPHAT_FILTER_1D

Listing 4: Restructured loop structure of the
test_filter function to suite OpenMP
parallelisation, taken from turb. £90.

SUBROUTINE TEST_FILTER (HAT, ORIG)

REAL (EB), INTENT (IN)
ORIG(0:IBP1,0:JBP1,0:KBP1)

REAL (EB), INTENT (OUT)
HAT (0:IBP1,0:JBP1,0:KBP1)

INTEGER :: I, J, K, L, M, N

REAL (EB), PARAMETER K1D(3) = (/1.0, 2.0,
1.0/)

REAL (EB), PARAMETER K3D(-1:1, -1:1,

-1:1) = RESHAPE((/ (((K1D
(I)*K1D (J) *K1D (K) /64.0,1I=1,3),J=1,3),K=1, 3)
/e (/) 3,3,3 7))

! Traverse bulk of mesh
!'SOMP PARALLEL
!'SOMP DO SCHEDULE (static)
DO K = 1,KBP1-1
DO J = 1,JBP1-1
DO I = 1,IBP1-1
! Apply 3x3x3 Kernel; this is faster
than

! intrinsic array multiplication.

HAT (I, J,K) = 0._EB

DO N = -1,1

DO M= -1,1
DO L = -1,1
HAT(I,J,K) = HAT(I,J,K) +
ORIG (I+L, J+M,K+N) % K3D(L,M,N)
ENDDO
ENDDO
ENDDO
ENDDO
ENDDO

ENDDO

!'SOMP END DO
! Traverse faces, edges and corners
!'SOMP DO SCHEDULE (static)
DO K = 0,KBP1
DO J = 0,JBP1
HAT(0,J,K) = 2._EB * HAT(0+1,J,K) -
HAT (0+2, J,K)
HAT (IBP1,J,K) = 2._EB % HAT(IBP1-1,J,K)
- HAT (IBP1-2,J,K)
END DO
END DO
!'SOMP END DO
[...]
END SUBROUTINE TEST_FILTER

To avoid these copy operations as well as to sim-
plify the code, the three 1D filter operations were re-
placed with a single loop using a 3x3 filter kernel
(Listing |4] lines 19 - 25). This produces a single big
loop which is, due to its simple structure, straightfor-
ward to parallelise with OpenMP (lines 12 and 32).

The application of the tophat filter kernel for the
LES equations requires an element-wise multiplica-
tion. This can be implemented using a Fortran intrin-
sic for element-wise multiplication or by manually de-
composing the operation into three loops. The results
of a micro-benchmark show a speedup of four for the
latter method, see Table The filter operation was
applied (10.000 times) to the bulk (no outer shell) of a
cubic 3D array with an edge length of 80.

elementwise multiplication runtime (s)

FORTRAN intrinsic 84
manual decomposition 20

Table 1: Timing of two ways to compute the filter kernel.

The shell (faces, edges, and corners) of the mesh,
to which the kernel cannot be applied, is computed as
it was in the serial code. In the serial code, the shell
for each dimension was processed after the bulk had
been calculated in that dimension. Since the filter of
the bulk is completed in all three dimensions prior to
the shell operation, the results of the filter operation
are not numerically identical — in general on the scale
of machine precision. Due to the change in the or-
der of the floating point operations, the results would
differ numerically anyway, but the differences in the
shell will be larger than in the bulk.

Dataraces in Wall Loops

Dataraces are an inherent danger of shared memory
parallelisation. Since all threads have access to the
same memory they can read and write to the same lo-
cation. While read-only access is not a problem and
provides one of the benefits of shared memory paral-
lelisation, namely not having to duplicate all memory
for the workers, read-write access is difficult. For ex-
ample when the body of a loop requires a temporary
variable. If more than one thread uses the same mem-
ory to store this variable they will accidentally over-
write each other causing faulty results.

The wall loops in FDS all follow a similar struc-
ture. An example is given in Listing[5] They iterate

over a set of wall loop indices IW). Each IW identi-
fies a wall cell WC which is a derived data type that in-
cludes the indices to the neighbouring cells in the solid
(IL, JJ, KK — not in the example) and the gaseous phase
(IIG, JJG, KKG). The variable IOR indicates the ori-
entation of the wall cell to the gaseous phase. The
use of the neighbouring cells gives rise to detectable
dataraces (for example with the Intel Threadchecker).
The reason for this is that in corners several wall cells
can share the same neighbour. While these would also
overwrite each other in the serial execution of the wall
loop, during a multi-threaded execution these writes
might occur simultaneously (line 17) which could lead
to data corruption. To overcome this issue, OpenMP
critical or atomic statements were used (lines 16 and
18). This ensures that the write (or updates) of data
occurs atomically using the appropriate hardware in-
structions.

Listing 5: Example of a wall loop. The potential data races
caused by multiple wall cells (WC) sharing the
same neighbouring gas phase cell are solved us-
ing OpenMP atomic instructions. Adopted from
divg.f90.

WALL_LOOP2:
DO IW=1, N_EXT_WALL_CELLS+N_INT_WALL_CELLS

WC => WALL (IW)

1IG WC%ONE_D%IIG
JJG = WC%ONE_D%JJG
KKG = WC%ONE_DS%KKG
IOR = WC%ONE_D%IOR
[...]
RHO_D_DZDN = 2._EB*WC%RHODW (N) =
(z2ZP (I1G,JJG,KKG,N) -WC%ZZ_F (N)) * WC%RDN
SELECT CASE (IOR)
CASE(1)
!SOMP ATOMIC WRITE
RHO_D_DZDX (IIG-1,JJG,KKG) = RHO_D_DZDN
!SOMP END ATOMIC
[...]

Loop Carried Dependency
in the Radiation Solver

Dependencies of a loop iteration on previous iterations
prevent a straight forward parallelisation. In the very
general case such loops can not be paralellised as they
are in fact a sequence of dependent instructions. How-
ever, sometimes there might be underlying structures
which allow for loop transformations that remove, or
reduce, the loop carried dependencies.

10

11

One of the largest runtime contributors is the func-
tion of the radiation solver compute_radiation.
The big loop in this function is the radiation propa-
gation. One of the settings for FDS is the number of
angles over which the radiation propagation is discre-
tised. Another is the number of spectral bands to use
when computing the absorption. Both of these settings
are reflected in loops in the radiation solver.

The radiation propagates for each angle in an indi-
vidual loop. Depending upon the orientation with re-
gard to the mesh, the propagation begins from any of
the eight corners of the mesh. This is reflected in the
propagation loop by setting the start, end and step di-
rection of three nested loops used to traverse the mesh.

Within the propagation loop (Listing|6), three lines
(6-8) give rise to a loop-carried dependency. During
the propagation, the values for the current cell depend
on the values calculated for previous cells. Figure
(left) illustrates the issue for a 2D mesh. The depen-
dencies spread through the mesh like a wave, leading
to the term loop-carried wavefront dependency.

Listing 6: Abbreviated loop from the radiation solver to il-
lustrate the loop-carried dependency. Adopted
from radi. £90.

SLICELOOP: DO IJK = 1, M_IJK
I = IJK_SLICE(1,IJK)
J = IJK_SLICE (2, IJK)
K = IJK_SLICE (3, IJK)

ILXU = IL(I-ISTEP,J,K)
ILYU IL(I,J-JSTEP,K)
ILZU IL(I,J,K-KSTEP)

ATU_SUM = AX+ILXU + AY*«ILYU + AZxILZU
IL(I,J,K) = MAX(0._EB, RAP * AIU_SUM)
ENDDO SLICELOOP

While there exists solutions for many loop-carried
dependencies [Hager & Wellein, 2010], only few
cover the wavefront dependency [Anvik et al., 2001]]
and none are applicable to a 3D mesh in all eight di-
rections of propagation. On that account, a new ap-
proach is proposed.

The idea is to parallelise within each wavefront,
since the cells within a wavefront are not dependent
upon each other. To do this, the indices of the cells in
a wavefront need to be determined and stored in a list
which can then be iterated over. The basic principle
for this is illustrated in Figure 3] (right).

An explanatory implementation of this algorithm
is given in Listing [7] The first loop (line 1) iterates
over all possible wavefront sums. In the following, all

cells belonging to the currently iterated wavefront are
collected into the s11ice structure (lines 3 - 11). The
actual computation (line 18) loops over all matching
indices (line 14).

Listing 7: Algorithm for removing loop carried depen-
dency. This code only works for the case where
the propagation runs in positive direction in all
dimensions.

do ind_sum = imin+jmin+kmin,
! Determine the cells in the slice

imax+jmax+kmax

do k = kmin, kmax
do j = jmin, Jjmax
i =ind_sum - k - j
if (i >= imin .and. i <= imax) then
cell count = cell_count+1l
slice(:, cell_count) = (/i,3,k/)
end if
enddo
enddo

! Do the work
do ijk = 1, cell_count
i = slice(1,1ijk)

j = slice(2,17k)
()

k slice(3,1ijk
a(i, j, k) (a(i-1,3,%)
a(i,j, k-1)) / 3
enddo
enddo

+ a(i,j-1,k) +

The next step is to generalise this for the other di-
rections. This can be achieved by introducing a step-
ping direction into the calculation of the index sums
and the index subtraction. This solution can easily be
expanded for three dimensions and is implemented in
the current version of FDS.

With this code, the propagation can be parallelised
using OpenMP. The issue is that while the propagation
is now parallel, the calculation of the indices intro-
duces a new costly serial loop. The reason this loop is
so costly is the branching within the inner loop caused
by the bounds checks.

By calculating the point where the inner loop en-
ters and exits the bounds, these checks can be omitted.
Due to the necessity of running in eight directions, this
requires some case selection. Also the loops used for
calculation now always run in the positive direction
(to ease the externalisation of the bounds calculation).
Depending on the direction of propagation, the new
bounds need to be calculated differently.

0 0 0 1 2 3 4
\ \ \ \ \ \ \ \
[v v v v v v v
1 —3 -3 —3 —3 12 =3 -4 -5
\ \ \ \ \ \ \ \
[v v v v v v v
2 Y Y Y Y 2 = 3 4756
\ \ \ \ \ \ \ \
v v v v v v v v
3 Y — — — 34567
\ \ \ \ \ \ \ \
v v v v v v v v
1 Y —3 —3 —s | 4 5 6 7 8

Figure 3: The propagation of radiation in the radiation solver has a loop-carried dependency. The dependencies structure is illus-
tration in a simplified 2D example on the left. Here the information flow is indicated by arrows. One can observe the
wavefront of independent cells that moves through the mesh. The right depicts the sum of the x- and y-indices for each
cell. These conform with the wavefronts and can be parallelised over.

ACHIEVED PERFORMANCE

It is important to distuingish speedup from perfor-
mance. Speedup is a relative measure and de-
pends upon the baseline that is used, usually the
runtime of the serial executable. Bad serial perfor-
mance will therefore usually lead to better speedups
[Hager & Wellein, 2010)].

This is why it is important to also have some form
of absolute measure of performance. One way of do-
ing this is calculating the number of cells that have
been updated per second. This allows the comparison
of various problem sizes as well as numbers of threads
used.

Such a metric can be calculated thanks to the in-
formation provided by the FDS out files. These re-
port the runtime required by the time steps as well as
the mesh dimensions of the simulation. Taking these
number we can calculate the cell calculations per sec-
ond. Two things may distort this metric in FDS: the
pressure solver and the stability checks. The pressure
solver might take several or even hundreds of itera-
tions before it achieves results below the allowed ve-
locity error. And whenever the stability checks fail the
predictor step is rerun with a smaller time step. Which
means that the metric is not only dependant upon the
computational cost of the solvers but also upon the
case being simulated.

The benchmark case used for this work only re-
quires a single pressure iteration and does not run into
stability issues. The number of pressure iterations

for each timestep is reported but since the pressure
solver only constitus a part of the predictor correc-
tor scheme one can not simply normalise the metric
with this number. Which means that benchmarks with
other cases need to be checked with regard to these
two issues prior to using this metric.

Benchmark Setup

As FDS is a very flexible software and is applied to a
wide range of scenarios, it is difficult to find a repre-
sentative benchmark scenario. Yet, the bench?2 input
file, which is shipped with FDS, provides a reasonable
compromise.

The slightly modified input consists of

e a computational domain 1.6m x 1.6m x 3.2m,

e equally discretised with varying number of grid
cells, whereas in the following the sizes are ab-
breviated by 1k = 1024 and 1M = 1k - 1k,

e a simple polyurethane burner with a power of
180kW, and

e soot particle tracing.

The following measurements are based on FDS
version 6.1, compiled with version 13.1 of the Intel
compiler. The computer systems used for benchmark-
ing are outlined in Table 2]

As the measurement of execution time is essen-
tial during software parallelisation. The main perfor-
mance measuring tools used in this work are scalasca
[scalascall and VTune [vtunel]. A characteristic profile

workstation juropa2 juropa3

processor(s) 17-2600 2x Xeon X5570 2x Xeon E5-2650
clockspeed 3.4 GHz 2.93 GHz 2.0 GHz

cores (threads) 4 (8) 8 (16) 16 (32)

cachesize 8 MB 8 MB 20 MB

memory bandwidth 21 GB/s 32 GB/s 51.2 GB/s

Table 2: Hardware specifications of the systems used for profiling and benchmarking. Juropa3 has a variety of different node types
with various accelerators, this information is not pertinent since we did not utilise them. The thread number given above
indicates the number of treads in hyperthreading mode.

of the serial code is listed in Table[3]in a top view, i.e.
the time spent in functions directly called by the main
function.

function t[s] t[%]
divergence_part_1 484 33.7
compute_velocity_flux 20.0 139
mass_finite_differences 159 11.1
compute_radiation 134 93
update_particles 7.4 52
dump_mesh_outputs 7.0 4.9

pressure_iteration_scheme 5.7 4.0

Table 3: Topdown profile of the bench?2 scenario in serial
execution. Only the seven costliest functions are
listed.

The Table (4| shows the bottomup view of the ex-
ecution. It allows to determine costly parts (loops or
functions) of the source code which do not branch into
other parts. The costliest lowest routines and loops are
presented.

function tfs] t[%]

scalar_face_value 148 159
get_sensible_enthalpy_diff 4.0 4.3
loop,1.1012, radiation_fvm 3.7 4.0

loop,1.151,div._part_1 2.4 2.6
loop,1.672,velocity_flux 2.4 2.6
heat_transfer_bc 2.3 2.5
loop,1.732,velocity_flux 2.3 2.4

Table 4: Bottomup profile of the benchZ2 scenario in serial
execution. Only the seven costliest loops and func-
tions are listed.

OpenMP Speedup

With OpenMP being the focus of this work, at first the
speedup achieved using only OpenMP is analysed. To
be able determine the effect of the mesh size, addi-
tional versions of the benchmark setup were created
with progressively larger meshes.

Looking at the speedup for pure OpenMP on these
three systems in Figure] one can observe several in-
teresting effects.

First of all the speedup continuously improves
with increased mesh size. This is to be expected since
larger meshes mean that more time is spent inside the
parallelised region leading to a greater parallel frac-
tion and ergo a greater speedup.

The second interesting effect is that hyperthread-
ing is detrimental to performance. The workstation
has four hardware threads, juropa2 has eight and ju-
ropa3 16. This means that the use of eight, 16 and 32
threads respectively utilises hyperthreading, i.e. over-
booking each computational core. On all three plat-
forms the speedup when using hyperthreading falls
below that of using only hardware threads.

The third observation is that the hardware can im-
prove the speedup. It is important to remember that
the speedup is always calculated against the runtime of
the serial version on the same hardware. This means
that while the code might already run faster in gen-
eral, better hardware also improves our scaling. This
can be seen for the huge case where the speedup on
juropa3 is consistently better than the speedup for the
same thread count on the workstation and juropa?2.
This is most likely due to the differences in mem-
ory bandwidth and cache size. Juropa3 has 51.2 GB/s
whereas juropa2 has 32 GB/s and my workstation only
21 GB/s. Hence investing in a newer processor gener-
ation with higher bandwidth might be worth the higher
cost even when the OpenMP version of FDS obvi-
ously cannot make efficient use of the higher CPU

workstation

juropa2

juropa3

speedup
S

speedup
S

speedup
8]

1 2 4 8 16 32 1 2
number of OpenMP threads

4

8

number of OpenMP threads

16 32 1 2 4 8 16 32
number of OpenMP threads

— 64k

— 512k‘

Figure 4: FDS scaling of pure OpenMP. The benchmarks are run on three different computer configurations (Table |2) with three
different mesh sizes: 64k, 128k and 512k cells in total. In all cases the speedup rises — although not ideally, as indicated
by the grey line — up to a factor of about two. The last increase in the number of threads represents an oversubscription
of two for each computational core, which leads to a decrease in speedup.

count.

Parallel Performance

At first a serial profiling is required to identify the re-
gions to parallelise. After that a measurement of the
success of the subsequent parallelisation is needed.
This subsection covers the methods used to measure
the degree of parallelisation and the effect of schedul-
ing choices.

Measuring the degree of parallelism in a code is
not straightforward. Counting the lines of code that
are executed in parallel is of no use, as we are inter-
ested in execution time. One might consider count-
ing machine instructions but it is questionable whether
that is of any greater value, as modern computer archi-
tectures overlap instructions to hide memory access
latency.

As a consequence a thread-individual runtime is
a good choice, as provided by tools like scalasca
[scalasca]. With this a parallel percentage P can be
calculated,

n - tehild

P =
tmaster + (TL - 1) : tchild

(D

with P being the parallel fraction, t,,4ster and
tcnig the time spent respectively in the master and a
single child thread and n the number of threads used.

An alternative approach is based on the total run-
time. The degree of parallelisation should give an in-
dication as to the attainable speedup for a given num-
ber of cores or in this case threads. By taking the num-
ber of parallel threads into account, we can work back-
wards to determine a degree of parallelisation from the

achieved reduction of runtime. By doing this we can
also obtain a parallel percentage from the total run-
times reported by FDS.

P= tserial - tOMP . n
n—1

2

With P being the parallel fraction, tgeriq; and
tonmp the time used respectively by the serial and
OpenMP version, and n the number of threads used.

tsem'al

Bad scheduling means that the work is not spread
equally between the OpenMP threads resulting in
threads running idle while they wait for the others to
complete. Such imbalance can usually be alleviated
by changing the scheduling of an OpenMP loop. In
most cases a static scheduling is sufficient.

Static scheduling means that the loop iterations are
divided by the number of threads and each thread is
given an equally sized block. In cases where the work-
load of the loop iterations is not equal, static schedul-
ing causes an imbalance. A lot of loops in FDS have
cycle statements that result in such differences in the
workloads.

Such imbalances can be fixed using guided
scheduling which assigns each thread a chunk of the
iterations and when it completes assigns it a new
chunk. With guided scheduling, the chunk size starts
large and then decreases. Such scheduling incurs a
greater overhead than static scheduling which is why
it should only be applied at large imbalances.

OpenMP Performance

Using the measure of cell updates per second on the
data gathered on juropa2, the performance of FDS on

juropa2 can be measured (Figure[3)). As the mesh size
increases so does the number of cell updates per sec-
ond. However, as the thread count increases, perfor-
mance does not increase in the same way; the resulting
scaling is sub-optimal.

The detrimental effect of hyperthreading can be
seen more clearly here. The cells per operation when
using hyperthreading to accommodate 16 threads are
consistently lower than when using eight or even only
four threads.

One new effect we can see in Figure [3] is that
the updates per second stagnate and decrease for the
cases using more than half a million cells. This stag-
nation of the performance for the larger cases is very
interesting. The fact that the performance remains
constant for four threads and that the eight and 16
thread numbers converge to the same value points
towards some bottleneck being saturated. That the
hyperthreaded performance reaches the performance
of the eight threaded case at four million cells is also
intruiging. Which bottleneck(s) might be causing this
is discussed later.

The following Table [5] lists all FDS routines that
have so far been parallelised using OpenMP. Their
parallel percentage P was computed individually for
each routine following Equation [2| For all functions
except the pressure_solver, a sufficient paral-
lelisation was achieved.

function P

divergence_part_1 82.8
species_advection 78.4
radiation_fvm 87.5
compute_viscosity 79.4
enthalpy_advection 69.5
mass_finite_differences 75.7
velocity_flux 97.2
density_advection 65.4
pressure_solver 17.2
test_filter 99.4
baroclinic_correction 99.8

Table 5: The parallel percentage P of all routines paral-
lelised with OpenMP.

MPI and Hybrid Speedup

Having looked at OpenMP performance, the MPI and
hybrid (MPI and OpenMP) parallelisation speedup is

demonstrated. The benchmarks were done with only
a single mesh size of 512k cells.

For the MPI cases the meshes were divided into
equal parts, so that each MPI process computes one
mesh. In the hybrid case, each process was assigned
OpenMP threads. Thus for example with two MPI
processes and four OpenMP threads, each MPI pro-
cess spawned three child threads, in total utilising
eight cores; no hyperthreading was used here.

The achieved pure MPI speedups are presented in
Figure [6] (left). As was to be expected, the pure MPI
parallelisation outperforms the OpenMP parallelisa-
tion (compare with Figure). This is due to the fact
that a domain decomposition introduces parallelism at
the outer level. Compared to the incremental approach
with OpenMP, the parallelisation should consequently
be greater, leading to greater speedup.

Accordingly, the speedup achieved using hybrid
parallelisation lies below that of MPI parallelisation
when using the same amount of CPUs, see Table@

MPIranks OMP tasks speedup

4 8 1.00
8 4 1.89
16 2 2.71
32 1 342

Table 6: Timing comparison of various combinations of
MPI ranks and OpenMP tasks all using 32 cores
in total.

The important thing to note here is that MPI par-
allelisation is not always an option in FDS. This, of
course, was the original motivation of this work. So
as can be seen, when further MPI parallelisation is
not possible but further computational resources are
available on the same node, a hybrid parallelisation
can utilise these additional resources, see right part of

Figure 6]

DISCUSSION

The goal of this work is to provide an OpenMP version
of FDS that can also be used for hybrid parallelisation
with MPI. This has been successfully implemented,
verified and benchmarked. The current degree of
parallelisation for OpenMP parallelised routines lies
somewhere between 40 and 70 percent. On modern
architectures (e.g. Intel Sandy Bridge) this leads to a
speedup of roughly two when using four threads and

ey
o

3.5
@
o
=30
W
[
g 2.5
% .
E 2.0
’ = 2 threads = 8 threads
= 4 threads 16 threads
1.5

64 128 256 512 1024 2048 4096 8192
number cells [10%]

Figure 5: Number of cell updates per second. Six mesh sizes (64k, 128k, 512k, 2M, 4M and 8M) and up to 8 (16 using hyper-
threading) OpenMP threads on the juropa2 system are utilised. The maximal performance for all thread configurations
is achieved at a mesh size of at least 512k cells.

32 m===_ MPI ranks 1
we MPI ranks 2
16/ = ks =
5 g et —
(]
§ 4
2 //
1
1 2 4 8 16 32 1 2 4 8 16 32 64 128
number of MPI ranks number of cores used

Figure 6: Scaling of selected FDS modules in pure MPI execution (left) and hybrid (right), i.e. MPI in combination with OpenMP.
The number of cells was 512k. The grey line indicates in both figures an ideal linear scaling, normalised to the serial
execution. All runs were performed on juropa2. The pure MPI scaling behaviour of the main function and three selected
modules (divg, velo and radi) of FDS are presented. In all cases the scaling is good. Each line in the hybrid scaling
figure indicates a given number of MPI ranks, while the number of OpenMP tasks is increased (1, 2 and 4) and therefore
the total number of cores utilised.

thereby skirts the lower limit of what is considered ac-
ceptable computational efficiency (50 percent).

The parallelisation and speedup achieved is very
low; it is not uncommon for scientific code to scale to
thousands if not hundreds of thousands of cores. How-
ever these typically are more focused in their applica-
tion and restricted in their setting. Thus a speedup of
two, for a code that supports a wide range of appli-
cations and geometries is very respectable and great
boost to the many scientists and especially engineers
relying on FDS. That this speedup does not require ad-
ditional configuration work by the user also deserves
special mention.

Although the MPI based performance outruns the
OpenMP one, the effort is not worthless, as in many
applications of FDS the mesh can not be split arbi-
trary and therefore the MPI applicability is limited.
The performance discrepancy is mainly due to the
fact, that MPI decomposes the work on the very big
scale and the overhead or serial part (communication,
additional structures and work) is small. On the other
side, OpenMP tackles small loops and hence faces
relatively larger overheads.

The previously described stagnation of OpenMP
performance (Figure [5) for cases involving meshes
with more that 512k cells deserves futher study. Such
stagnation usually points towards some bottleneck be-
ing saturated. Given that none of the code in FDS
stands out as involving large amounts of floating point
operation on little amounts of data, FDS is most likely
memory bound. This means that some form of mem-
ory bandwidth is being saturated.

The memory bandwidth varies greatly depending
on which level of cache is being accessed or whether
we have to retrieve data from memory. As problem
sizes increase the data required for computation stops
fitting into the various levels of cache, so that memory
access becomes slower.

Many hardware platforms now involve multiple
sockets. To reduce costs each socket has access to all
of the available memory, but certain regions can be ac-
cessed faster. This is referred to as non-uniform mem-
ory access (NUMA). Depending on how the memory
is initially allocated it might happen that half of the
threads have to constantly access the region that is
slower for them.

While other factors might also contribute to the
stagnation, these two (caching, NUMA) are the most
common culprits for the saturation of memory band-

width.

Approaches to solve these issues exist. Most
NUMA issues are usually relatively straightforward to
fix since one can allocate the memory using the par-
allel threads, forcing them to create their working sets
in their own (faster) domain. This is of course only ef-
fective when the same threads access the same work-
ing sets later on. Dynamic scheduling or code like the
new, parallel radiation solver don’t benefit from this
approach.

Caching issues can be fixed by tiling the problem
set or generally adapting the way data is structured
and loaded. Such changes are often non-trivial to im-
plement and also due to the different cache sizes and
architectures not necessarily portable.

So while a deeper analysis is definitely interest-
ing, it might turn out that the changes required to over-
come the bottleneck are not feasible given the limited
ressources available for FDS development. The paral-
lelisation of the pressure and radiation solver can still
be improved with little effort and will be performed
following this work. Further parallelisation beyond
that is increasingly less likely to be of significant use.

CONCLUSIONS

The profiling of FDS using ScoreP and VTune showed
that FDS does not have any single loop that constitues
the majority of the runtime. Instead the runtime is
spread over many regions, with only a handfull con-
tributing more than five percent. No loop in FDS ex-
hibits an exclusive runtime of more than five percent.
Many of the loops and functions in FDS involve many
cases and function calls due to the flexibility of the
codes usage. This makes it difficult to ensure thread-
safe execution and avoid dataraces that cause invalid
results.

A parallel version of the tophat filter for the LES
equations was implemented, resulting in the filter ex-
hibiting a parallelisation of over 99 percent. The
wavefront loop-carried dependency in the radiation
solver was also removed, allowing this important
solver to also be parallelised.

Using a performance measure normalised over the
number of cells, we can see that the performance of
the OpenMP version increases with the number of
cells until we hit a bottleneck between 500.000 and
one million cells. The achieved speedup also increases
with the number of cells to be computed.

The used hardware also makes a difference, with

newer architectures with higher memory bandwidth
exhibiting greater speedups.

The speedup of pure OpenMP is considerably
smaller than that using MPI, but the OpenMP version
does not require manual decomposition of the meshes.

Overall several conclusions can be made regarding
the performance of the implemented version:

a speedup of two is attainable with four cores
larger cellcounts increase the speedup
hyperthreading reduces performane

MPI offers much greater speedup

hybrid (MPI and OpenMP) use is possible

To achieve larger performance and scaling gains
MPI is most likely the only path. This would require
a new pressure and radiation solver, but could ensure
valid results at mesh boundaries as well as an auto-
mated domain decomposition.

ACKNOWLEDMENTS

The authors gratefully acknowledge the computing
time granted on the supercomputer juropa at Jiilich
Supercomputing Centre (JSC).

REFERENCES

[mpi] MPI: A Message-Passing Interface Standard,
Version 3.0, www.mpi-forum.org

[openmp] OpenMP Application Program Interface,
Version 4.0, www.openmp.org

[Geer 2005] Geer, D. (2005), ”Chip makers turn to
multicore processors”, Computer, 38(5), 11-13

[Rabenseifner et al., 2009] Rabenseifner, R., Hager,
G. and Jost, G. (2009), Hybrid MPI/OpenMP
Parallel Programming on Clusters of Multi-
Core SMP Nodes., proceedings of the 17th Eu-
romicro International Conference on Parallel,
Distributed, and Network-Based Processing, in
Weimar, Germany, Feb. 16-18, 2009, Computer
Society Press, 427-436

[Hager & Wellein, 2010] Hager, G. and Wellein,G.
(2010), ’Introduction to High Performance
Computing for Scientists and Engineers”, CRC
Press, ISBN 9781439811924

[Anvik et al., 2001] Anvik, J., MacDonald, S.,
Szafron, D., Schaeffer, J., Bromling, S. ; Kai
Tan (2001), ”Generating parallel programs from
the wavefront design pattern”, Parallel and
Distributed Processing Symposium, 15-19 April
2001

[scalasca] Geimer, M., Wolf, F., Wylie, B., Abrahém,
E., Becker, B. and Mohr, B. (2010), “The
Scalasca performance toolset architecture”,
Concurrency And Computation: Practice And
Experience, 702-719

[vtune] Intel VTune Amplifier XE 2013,
https://software.intel.com/en-us/intel-vtune-
amplifier-xe

