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ABSTRACT

The scalability of the Fire Dynamics Simulator (FDS)
with respect to massively parallel computers largely
relies on the efficient solution of the pressure equa-
tion which is closely coupled with the computation of
all other thermodynamic quantities. The current FDS
pressure solver is based on the meshwise use of di-
rect Fast Fourier Transformations (FFT) which are it-
eratively coupled with an additional averaging process
along internal mesh boundaries. This purely local way
of proceeding can cause difficulties concerning the re-
liable approximation of global data dependencies en-
compassing the whole computational domain which in
turn may impair the effective use of multi-mesh com-
putations whilst retaining a high level of accuracy at
the same time.

As an alternative approach the solver package Scal-
able Recursive Clustering (ScaRC) is under develop-
ment consisting of a selection of different iterative so-
lution techniques of domain decomposition and multi-
grid type which belong to the most efficient and ro-
bust solvers for huge systems of equations. Based
on elaborated numerical combinations of local and
global mechanisms for capturing the overall physical
effects, ScaRC has already proven considerably en-
hanced scalability and accuracy properties for a va-
riety of different test and verification cases. This ar-
ticle is intended to give an overview of the under-
lying concepts as well as the current state of devel-
opment accompanied by some illustrative numerical
test examples and comparisons with the current FFT-
solver.

INTRODUCTORY OVERVIEW

The computer-based simulation of realistic fire scenar-
ios on modern multicore architectures places highest
demands on the efficiency of the underlying numeri-
cal solution procedures. For the optimal utilization of

the current technologies it is indispensable to sophis-
ticatedly transfer formerly approved methods - which
were usually designed for considerably smaller prob-
lem constellations on single processor systems - to the
new architectural features.

The most widely used methods are based on do-
main decomposition techniques: The considered com-
putational domain is subdivided into smaller subdo-
mains which are treated more or less independently
on the different processors of a parallel computer and
are coupled together by closely coordinated data ex-
changes among each other. Special care must be taken
to ensure that this artificial subdivision doesn’t im-
pair the immanent global connectivity of the underly-
ing problem. In particular, it must be guaranteed that
the parallelization process preserves the convergence
order and approximation quality of the original serial
methodology to the best possible extend.

Accordingly, the world-wide used computational fluid
dynamics program FDS which simulates the prop-
agation of fire and smoke was originally designed
for single-mesh constellations on single-processor sys-
tems and includes highly optimized serial components.
Motivated by the rapid development in the area of
high performance computers, FDS meanwhile also of-
fers the possibility to be executed in parallel on many
processors. This multicore application may reduce
the computing time for a given constellation and en-
large the class of computable problems to a great ex-
tent.

Based on a subdivision into cubic subdomains with
rectangular grid cells inside, domains with irregular
geometric structures may now be decomposed into
regular subdomains. The assignment of the subdo-
mains to the single processors as well as the coupling
among each other is done by means of the communi-
cation library Message Passing Interface (MPI) which
is the present standard.



At first sight, FDS has a high potential for paralleliza-
tion since it is mainly based on the application of an
explicit time stepping method which is responsible
for the simulation of all the thermodynamic quanti-
ties under consideration. While performing a new time
step, methods like that only utilise values on neigh-
boring grid cells from the previous time step which
have already been computed before. This suggests that
only local data exchanges between directly neighbor-
ing submeshes are required which can be performed
with high computational efficiency on modern parallel
architectures. Unfortunately, the situation reveals to be
more complicated as will be explained below.

THE FDS PRESSURE EQUATION

The reliable parallelization of FDS is largely deter-
mined by the correct approximation of the pressure
equation

∇2H = −∂(∇ · u)

∂t
−∇ · F (1)

which has to be solved several times in every single
step of the time stepping scheme, see [1].

As the vector F contains a collection of momentum
flux terms from the previous time step, the computa-
tion of the pressure term H is closely concatenated
with the computation of many other important quan-
tities in FDS.

From a mathematical point of view, equation (1) is
an elliptic partial differential equation of Poisson-type.
One fundamental characteristic of elliptic equations
consists of an extremely fast propagation velocity for
information which implies a very strong global con-
nectivity.
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Figure 1: Fast propagation velocity for information

Only a single time step may suffice to spread a new in-
formation over the whole computational domain as il-
lustrated in figure 1 for a simple two-dimensional pipe-
shaped domain. Local effects have immediate impact
on the overall solution.

Current FFT pressure solver

For the discretisation of equation (1) FDS relies on a
cell-centered finite difference method of second-order
accuracy. In the 2D-case the usual 5-point Laplacian
stencil
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h2
(Hi,k−1+Hi−1,k−4Hi,k+Hi,k+1+Hi+1,k)=Ri,k

is used. Based on a Taylor series expansion for the sec-
ond order derivative, this stencil describes the depen-
dencies of the single grid cells among each other as il-
lustrated in the enlarged section in figure 2. The gener-
alization to the well-known 7-point stencil for the 3D-
case is straightforward, see for example [4].

In case of a single-mesh constellation this discretiza-
tion process transforms equation (1) into a correspond-
ing system of equations

Ax = b (2)

with one global matrix A and vectors x and b.

In case of a multi-mesh constellation with M sub-
meshes a very natural parallelization strategy is used:
Instead of one global system of equations, each sub-
domain holds its own system of equations

Aixi = bi , i = 1, . . . ,M (3)

with local matrices Ai and vectors xi and bi. Sub-
sequently, the locally computed solutions xi are cou-
pled together by data exchanges between neighboring
meshes.
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Figure 2: Discretization of a 2D pipe geometry with
5-point matrix stencil

As illustrated in figure 2, the mathematical solvability
of the local subdomain problems requires the defini-
tion of new artificial boundary conditions along the in-
ternal subdomain boundaries which don’t have a phys-
ical equivalent.



The current FDS pressure solver for the solution of the
resulting systems of equations is based on highly op-
timized FFT-techniques taken from the solver package
CRAYFISHPACK.FFT-methods belong to the class of
so-called direct methods which compute the exact so-
lution of a linear system of equations (up to machine
precision) in one computational cycle which may be
very complex.

In the single-mesh case only one globally defined FFT-
method is performed which has proven to be extremely
efficient and robust over the past years. Figure 3 illus-
trates the situation for the already known pipe exam-
ple. Since FDS is only able to scope with rectangular
subdomains, the computational domain has to be en-
larged correspondingly.
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Figure 3: Single-mesh discretization with global FFT-
method for the 2D pipe geometry

In order to avoid this additional need of storage space
and computational time, it would be preferable to
subdivide the domain into more regular subdomains
which is done in the multi-mesh case as shown in fig-
ure 4. There, each subdomain performs its own, local
FFT method accompanied by the subsequent coupling
of the local solutions to a global one.

local
FFT

local
FFT

local
FFT

local
FFT

Figure 4: Multi-mesh discretization with local FFT-
methods for the 2D pipe geometry

This purely locally oriented approach possesses an
extremely high parallel efficiency because it only
uses computationally cheap data exchanges between
meshes which are direct neighbors.

However, the excellent efficiency of direct methods
mainly rests on highly recursive and domain-spanning
data dependencies. With a special view to the very
high propagation velocity of the pressure equation it
soon comes clear that the rather unphysical breakup of
the global connectivity induced by the subdivision pro-
cess cannot be sufficiently compensated by this very
local way of proceeding.

An information exchange from one domain part to
the other one can only take place in a stumbling way
with the detour over all meshes in-between. There-
fore, global dependencies can only be reproduced in a
delayed temporal way, see figure 5.
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Figure 5: Stumbling data transfer of multi-mesh FFT
for the 2D pipe geometry

The higher the number of subdomains and the corre-
sponding fragmentation of the global connectivity is,
the larger this effect may be. In the worst case this can
lead to massive deteriorations of the approximation
quality and the stability of the whole method.

Unfortunately, the efficient parallelization of the
global FFT-methodology is extremely difficult. In the
single-mesh case all data required for the computa-
tions are easily accessible in the storage of the only
processor in use. But in the multi-mesh case the global
dependencies are broken up arbitrarily by the domain
decomposition process. The required data are dis-
tributed over all processors and have to be exchanged
frequently which is very inefficient from a computa-
tional point of view.

Usually, the underlying parallelization strategies are
based on purely algebraic considerations and are not in
agreement with geometrically motivated subdivisions.
This fact immensely impedes the efficient paralleliza-
tion of this class of methods.

In order to remedy the situation, the default mecha-
nism for the pressure solution was extended with re-
lease 6 of FDS: Embedded in a surrounding iteration,



the solution of the local FFT methods is not only per-
formed once but a couple of times, until the normals of
the single velocity components along internal bound-
aries match up to a specified ’velocity tolerance’. Ad-
ditionally, a maximum number of allowed iterations
may be defined, e.g.

&PRES VELOCITY TOLERANCE= 0.01

MAX PRESSURE ITERATIONS = 100

If nothing is specified by the user, a velocity tolerance
of ’characteristic mesh size’/10 and a maximum of 10
iterations are taken as default values. Figure 6 shows
a graphical visualization of the methodology.

Figure 6: Multi-mesh FFT with additional averaging
iteration for the 2D pipe geometry

In fact, the iterative multi-mesh FFT has led to no-
table improvements for many problem constellations.
But for cases with frequent variations of the global
information flow, this purely local approach may be
insufficient. In the worst case no reliable scalabil-
ity to high numbers of subdomains can be reached.
The computational accuracy of this approach doesn’t
seem to be universally predictable and the convergence
speed may possibly be low. Besides, it seems to be
difficult to find an optimal value for the tolerance a-
priori.

Alternative ScaRC pressure solver

These difficulties suggest to use a totally different ap-
proach for the solution of the pressure equation. Sub-
sequently, the alternative pressure solver ScaRC is
demonstrated which tries to fill the presented gap and
reach a substantial improvement in the quality of the
pressure approximation.

ScaRC is based on a purely iterative methodology. It
operates as some kind of modular system that com-
bines the use of:

• domain decomposition methods which are re-
sponsible for the subdivision of the problem,

• multigrid methods which are responsible for the
accuracy and speed of convergence.

Multigrid methods belong to the most efficient meth-
ods for the solution of large systems of equations aris-
ing from the discretization of partial differential equa-
tions. They are characterized by the ability to reach ex-
cellent convergence rates which are independent of the
grid resolution while having an asymptotically optimal
complexity at the same time, see e. g. [4, 6].

Starting from an initial guess, they need multiple up-
dating cycles during which the sequence of iterates
converges more and more to the exact solution of the
linear system. Thereby, a single iteration is consider-
ably less complex than the one and only pass through
a direct method such as FFT and can be led back to
a series of core components (matrix-vector products,
vector-linear combinations, scalar products), which
are very well suited for a hardware-optimized imple-
mentation.

Multigrid methods are based on the application of so-
called relaxation methods. Typical representatives of
those methods are the damped Jacobi method or the
Gauss-Seidel method. During the iteration process re-
laxation methods usually achieve a very fast reduction
of the high frequency error components whereas the
low frequency error components are usually damped
out very slow.

This special property is described by the term smooth-
ing property. If the solution vector has already un-
dergone a sufficient number of smoothing steps and
is then restricted by an averaging process to the next
coarser grid, lets say with the double step width, then
the error components which previously appeared to be
low frequent on the finer grid turn out to be high fre-
quent again on the coarser grid and may be damped
out by an additional relaxation method there.

Figure 7: Geometric multigrid variant of ScaRC with
different grid levels



As illustrated in figure 7, this process can be repeated
recursively until a final coarse grid level has been
reached on which an exact solution can be computed.
From there, the resulting solution vector can succes-
sively be interpolated back to the next finer grid level,
until the finest level is reached again. It is advisable
to perform a certain number of post-smoothing steps
on each level again when going the way back from the
coarsest to the finest grid level.

In contrast to the current multi-mesh FFT which only
relies on the application of a fine grid ScaRC thus uses
a complete hierarchy of increasingly coarser grids. On
all grid levels except of the coarsest one only next-
neighbor data exchanges are needed. But on the coars-
est grid level each mesh has to exchange data with each
other one which is more expensive from a computa-
tional point of view but seems to be necessary with
respect to the strong global connectivity.

Regarding the employed multigrid techniques two
main classes are distinguished:

• Geometric multigrid methods (GMG) use the
geometric information of the underlying prob-
lem for the definition of the single method com-
ponents. The grid coarsening is usually based
on a doubling of the grid size. On all grid levels
the same matrix stencils can be used. GMG can
be applied for broad classes of problems which
possess certain regularity properties und usually
achieve excellent convergence rates there.

• Algebraic multigrid methods (AMG) are only
based on algebraic informations which are avail-
able in the linear system of equation. On the
single grid levels usually different matrix sten-
cils (with more or less computational complex-
ity) arise. Due to their greater flexibility, they
may particularly be applied for more complex
problems, especially for irregular geometric sit-
uations. Usually they possess very good conver-
gence properties, but the convergence theory is
still more incomplete compared to GMG.

Both variants are successfully used in many scientific
fields and can be applied to more general linear sys-
tems than most direct methods.

In ScaRC both variants are available whereby the im-
plementation of GMG is currently more advanced than
that of AMG. But independently of the special type of
the multigrid method, the passing through the com-
plete grid hierarchy as well as the solution of the

coarse grid problem contribute to a very strong global
connectvity. Each grid level is responsible for the
coupling of a different range of the global informa-
tion.

In contrast to the multi-mesh FFT, this approach uses
a global discretization for the whole problem based on
a domain-spanning matrix. In fact, this global matrix
A is a purely formal construct which is never assem-
bled as a whole, but only exists in a distributed sense,
namely as a set of restrictions Ai to the single sub-
domains. But the whole iterative process is globally
defined and uses the solution of the subdomain prob-
lems only for the approximate correction of the global
residual which is measured in the mentioned relax-
ation methods.

All matrix-vector and vector-vector operations pro-
duce the same result as a hypothetic serial computa-
tion would do (if it really was available for the re-
garded case) which is denoted as data-parallel execu-
tion. There is no need to impose artificial boundary
conditions along the interfaces of the subdomains be-
cause internal boundary cells can be treated as usual
internal cells with respect to the virtual global ma-
trix.

At the end of the computation a global solution is pro-
duced where the values on different subdomains are
consistent along internal boundaries. The normals of
the single velocity components automatically match
up to machine precision.

As already mentioned, the termination of the iterative
process requires the definition of a stopping criterion
specifying which accuracy is required for the residual.
Again, this stopping criterion has to be chosen very
carefully.

The iterative process may be continued until machine
precision for the measured residual has been reached.
In this case, the resulting solution should in fact be the
same as for a hypothetic single-mesh computation. In
order to save computational costs, the iterative process
can be stopped earlier. In this case, only an approxi-
mation to the required solution is reached.

Because of the strong global coupling this may pos-
sibly impair the accuracy of the whole method such
that a proper compromise between time efficiency and
accuracy has to be found which is not always an easy
task. Experience has shown that a residual accuracy
of 10−10 or even 10−8 is usually enough to reach a
satisfactory accuracy of the global solution.



NUMERICAL TEST CASES

In agreement with the main developers ScaRC was
already integrated into the FDS source code. In the
course of several verification tests the convergence and
scalability properties for both, the multi-mesh FFT and
ScaRC, have been widely analyzed and compared, see
for example [3].

The results of those tests are encouraging: Especially
for test cases where no steady state may be reached
ScaRC leads to comprehensive improvements with re-
spect to accuracy and scalability compared to the cur-
rent multi-mesh FFT.

An essential criterion for the design of the test cases
was to separate the effects of the pressure solver from
those of the other solution components to the best pos-
sible extend. This seems to be the only way to draw
meaningful conclusions on the quality of the pressure
solver itself. Due to very complex interactions of the
single procedural components, superpositions or even
effacements of different effects may happen otherwise
which are only difficult to comprehend and which im-
pede a subjective evaluation.

Two- as well as three-dimensional test cases were con-
sidered. A particular attention was placed on the re-
quirement that the test cases should possess signifi-
cant global effects such that the ability of the differ-
ent solvers to scope with a strong global information
transfer could be thoroughly checked.

Verification test ’scarc3d’

The ’scarc3d’-case follows the upper design criterion.
It is defined on a simple cube-shaped domain in 3D
and can be regarded as the generalization of the al-
ready existing 2D-test case ’scarc2d’ from the official
verification directory of FDS to 3D.

At three sides of the cube a ramp-based inflow is de-
fined, see figure 8. One special feature of this case is
that the different inflow velocities are steadily modi-
fied on all three regarded sides.

The different inflows rise up and down from a velocity
of 0 to 2 m/s in small time intervals of 0.05 s, starting
with different initial velocities each.

Due to this special setting this case has to scope with
continually changing informations encompassing the
whole domain being an endurance test for the differ-
ent pressure solvers.

Figure 8: scarc3d-geometry with steadily changing in-
flows from three sides

Now, the focus is on how good both multi-mesh meth-
ods are able to preserve the accuracy of the basic
single-mesh method and how good they can be scaled
to large numbers of submeshes.

The whole cube is refined in N = 128 grid cells in
each direction. As shown in figure 9, two different
(regular) subdivisions with a proportional number of
grid cells for each submesh are considered:

• 4x4x4: 64 meshes, 323 grid cells each,

• 8x8x8: 512 meshes, 163 grid cells each.

4x4x4 (64 meshes) 8x8x8 (512 meshes)

Figure 9: 64- and 512-mesh decomposition for the
’scarc3d’-case

Approximately in the middle of the domain, a pres-
sure device is defined which records the corresponding
pressure values over the complete course of the com-
putation.

For all constellations, the values of the multi-mesh
FFT and ScaRC are compared to each other. Thereby,
different settings for the velocity tolerance of the
multi-mesh FFT are regarded, namely the already
mentioned default setting as well as the values tol =
10−2, 10−3 and 10−4 together with a correspond-
ing enlargement of the admissible number of itera-
tions.



Figure 10: Comparison of the pressure devices for the
64-mesh cases against the 1-mesh case

As a best possible reference value, the pressure de-
vice of the corresponding single-mesh case (based on a
global FFT-solver) is compared against the computed
pressure devices for the different multi-mesh cases,
see the upper picture of Figure 10.

The device for the single-mesh case is plotted in red.
Obviously, the default multi-mesh FFT (blue line)
doesn’t show any consistency with the single-mesh re-
sult for the 64-mesh case. Reducing the velocity tol-
erance leads to slow improvements: While a tolerance
of 10−2 (green line) hasn’t much effect, further reduc-
tions to values of of 10−3 (magenta line) and espe-
cially 10−4 (cyan line) show an increasingly better ac-

cordance, but without completely matching the course
of the single-mesh device. This can be seen in more
detail in the lower picture of figure 10 which enlarges
the indicated area. Here, the differences between the
single- and multi-mesh FFT-computations (even for
the finest velocity tolerance of 10−4) get more obvi-
ous.

In contrast to that, ScaRC (dashed line) fits completely
with the single-mesh course, both for the oscillating
parts as well as the jumps which correspond to the
points in time when the global inflow situations are
modified (multiples of 0.05 s).

Due to the higher degree of fragmentation the differ-
ences for the multi-mesh FFT are still more distinct in
the 512-mesh case. Figure 11 shows the corresponding
course of the pressure devices for the different compu-
tations. But even for this high number of subdomains,
ScaRC reproduces the oscillating behavior of the pres-
sure device quite well.

Figure 11: Comparison of the pressure devices for the
512-mesh cases against the 1-mesh case

Furthermore, figure 12 shows that each decrease of
the velocity tolerance leads to a comprehensive in-
crease of the number of iterations needed by the multi-
mesh FFT to reach the specified tolerance. Especially
at those points in time when the inflow conditions
change, a sudden growth can be experienced reflect-
ing the fact that this method has trouble to catch global
effects in time.



Figure 12: Number of pressure iterations for the 64-
mesh FFT solver, N = 128

It gets clear that the computational costs may compre-
hensively rise up in order to reach an accuracy which is
comparable to the single-mesh case. Figure 13 shows
an additional comparison of the required computing
times in case of the 512-mesh subdivision.

FFT(default) FFT(10−2) FFT(10−3) FFT(10−4) ScaRC

Figure 13: Computing times for the different 512-
mesh computations

Regarding the default setting and the tolerances 10−2

and 10−3, the computation times for ScaRC are con-
siderably longer than that of the multi-mesh FFT. But
a fair comparison should take into account that only
in case of a velocity tolerance of 10−4 the multi-mesh
FFT reaches a nearly comparable accuracy leading to
computing times which are notedly higher than for
ScaRC.

The relations for the computing times in case of other
applications may differ depending on the number of
submeshes, the degree of global information flow and
the optimal tolerances for the multi-mesh FFT.

Verification test Shunn3

The second test example is based on the ’shunn3’-
case from the official FDS Verification Guide [2]
called ’Variable-density manufactured solution’ which
clearly demonstrates the second-order accuracy of the
FDS time-stepping algorithm.

Based on the manufactured solution proposed by
Shunn et al. [5] the analytical solutions for the mixture
fraction Z, the density ρ, the velocities u and v and the
hydrodynamic pressure p̃ are available.

The underlying geometry is a square-shaped domain
in 2D with side length L = 2m which is regarded as
a single-mesh case. Different grid resolutions ∆x =
L/N with N = {32, 64, 128, 256, 512} in each direc-
tion were considered.

As illustrated in figure 14 for the density the solution
is spatially periodic and translates diagonally from the
lower left to the upper right hand side of the domain
whereby the single density peaks fade in and out con-
tinuously.

Figure 14: Density for shunn3 in the 1-mesh case

In order to analyze if ScaRC is able to preserve the
second-order accuracy of the single-mesh case, subse-
quently a 4-mesh (2x2) and 16-mesh (4x4) decompo-
sition of the domain were considered.

For different simulation times of the 16-case figure 15
shows the evolution of the density which fits very good
to the course of the single mesh case.

t = 0.0 t = 0.17 t = 0.34 t = 0.5

Figure 15: Spatially periodic translation of the density
for the 16-case



In parts (A) and (B) of figure 16 the L2-errors for the
two different decompositions are plotted as a function
of all considered grid spacings.

(A) 2x2-decomposition (4-mesh):

(B) 4x4-decomposition (16-mesh):

Figure 16: Convergence of ScaRC for shunn3 for dif-
ferent mesh-decompositions

Obviously, the second-order accuracy for density, mix-
ture fraction and velocity, which was achieved for the
single-mesh FFT in [2] can also be confirmed for the
different multi-mesh ScaRC settings. Because ScaRC
solves the same global system of equations as the
single-mesh case does, the corresponding convergence
behavior is preserved. Similar results were obtained
for other test cases from the FDS Verification Guide
[2] such as ’pulsating’ or ’ns2d’.

Final discussion

The illustrated examples as well as a variety of other
tests which have been performed over the past clearly
show the gain of accuracy and scalability for the pres-
sure solution which can be reached by the new ScaRC-
methodology, especially for cases with a considerable
variation of the global information flow.

Since ScaRC is based on the solution of the corre-
sponding global system of equations, the basic char-
acteristics of the pressure equation such as the strong
global coupling are well reproduced.

Further optimizations of the algebraic multigrid vari-
ant as well as the use of meshwise different grid reso-
lutions are currently in work.

The ScaRC method isn’t optimized from a compu-
tational point of view yet. If there is no namable
degree of global information flow, it usually needs
higher computing times than the default multi-mesh
FFT. However for test cases which don’t reach a steady
state, the situation changes considerably and ScaRC
proves superior. Basically, the exclusive look at the
computational times cannot be an adequate evaluation
criterion as long as no comparable accuracy is reached
at the same time. In fact, the numerical efficiency with
regard to accuracy and stability should the most im-
portant measure.
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