#### **EGRESS FROM A HOSPITAL WARD: A CASE STUDY**

D. Ursetta, A. D'Orazio, L. Grossi, S. Casentini, L. Poggi

**Grazia Carbotti** Engineer, Health and Safety Office

#### Fire and Evacuation Modeling Technical Conference 2014 Gaithersburg, September 8-10



CAMPUS BIO-MEDICO UNIVERSITY OF ROME Via Álvaro del Portillo, 21 - 00128 Rome - Italy www.unicampus.it

## Why egress from an hospital is a difficult topic ?

#### • Medical unstable or bed-bound patients

• Staff

## • Building complexity





## Modelling the evacuation of a single ward

- Importing the DWG file in Pathfinder
- Survey to determine number of patients and staff
- Profile and behavior for each occupant





## Profile and Behaviour of each occupant

| Mobility<br>feature        | Profile                 | Speed [m/s] | Shoulder<br>Width<br>[cm] | Current<br>Door<br>Preference<br>[%] | Reduction<br>Factor | Comfort<br>Distance [m] |
|----------------------------|-------------------------|-------------|---------------------------|--------------------------------------|---------------------|-------------------------|
| mobilise with<br>bed       | geriatric_patient<br>_2 | 0.25 - 0.40 | 77                        | 100                                  | 1                   | 1.73                    |
| able without<br>assistance | nurse                   | 1.10 – 1.60 | 42 - 46                   | 90                                   | 0.9 - 1             | 0.1 – 0.15              |
|                            |                         |             |                           |                                      |                     |                         |
| Number of                  |                         |             |                           |                                      |                     |                         |

| Number of<br>person with<br>same<br>behaviour | Туре    | Initial delay<br>[s] | Exit | Actions<br>order        | Behaviour                                                                                                                    |
|-----------------------------------------------|---------|----------------------|------|-------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 1                                             | nurse_1 | 110                  | F30  | A+C+B+C+B+C<br>+B+C+B+C | nurse_1 smells burnt, alerts<br>another nurse and tries to<br>extinguish the fire, while nurse_2<br>alerts the control room. |



### **Bed-bound patients**



- Larger shoulder width
- Larger comfort distance



## **Bed-bound patients**

| Edit Door State |                  |        |               |          |  |  |
|-----------------|------------------|--------|---------------|----------|--|--|
| Initia<br>Time  | al Value: Open 🗸 | ]      |               |          |  |  |
|                 | Time             | Value  | >Insert Rov   | ,        |  |  |
| 1               | 1378,0 s         | Closed |               | $\equiv$ |  |  |
| 2               | 1381,0 s         | Open   | 🔤 🔤 Remove Ro | W        |  |  |
| 3               | 1383,0 s         | Closed | =             |          |  |  |
| 4               | 1386,0 s         | Open   | 📃 🛛 🐟 Move Up |          |  |  |
| 5               | 1389,0 s         | Closed |               | $\equiv$ |  |  |
| 6               | 1392,0 s         | Open   | Move Down     | n        |  |  |
| 7               | 1395,0 s         | Closed |               |          |  |  |
| 8               | 1398,0 s         | Open   | 🚺 Copy        |          |  |  |
| 9               | 1401,0 s         | Closed |               |          |  |  |
| 10              | 1403,0 s         | Open   | 📋 Paste       |          |  |  |
| 11              | 1429,0 s         | Closed |               | $\equiv$ |  |  |
| 12              | 1432,0 s         | Open   | 🤜 🛛 🔏 Cut     |          |  |  |
|                 |                  |        |               | _        |  |  |
|                 |                  |        | OK Canc       | el       |  |  |





## Supposed scenarios

• Fire in the local kitchen

SW

• Fire in the electrical room SW

• Fire in a patient's room

#### SW + REAL DRILL



## Fire in a patient's room: software modelling





## Fire in a patient's room: available exits





## Fire in a patient's room: real drill









## Results: egress time



#### Fire in the electrical room: 1800 sec



## Results: egress time



#### Fire in the local kitchen: 1370 sec



## Results: egress time



Fire in the patient's room from simulation: 967 sec



## Results: bottleneck in exit F18





### Results: bottleneck in exit F18





## **Conclusions and Outlook**

- 1. Similar egress time
- 2. Testing different scenarios and educational purposes

of software

- 3. Need for further validation exercises
- 4. Needs of improvements in software tools

### 5. Better architectonical design of the building



# Thanks for your attention!

