The Challenge of Maintaining FDS and CFAST

Kevin McGrattan

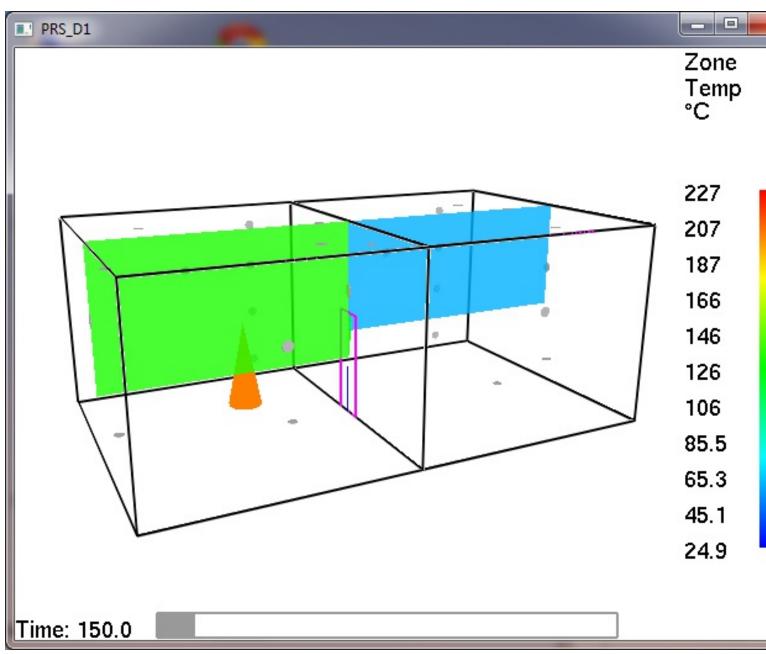
National Institute of Standards and Technology

kevin.mcgrattan@nist.gov

Fire Model Survey

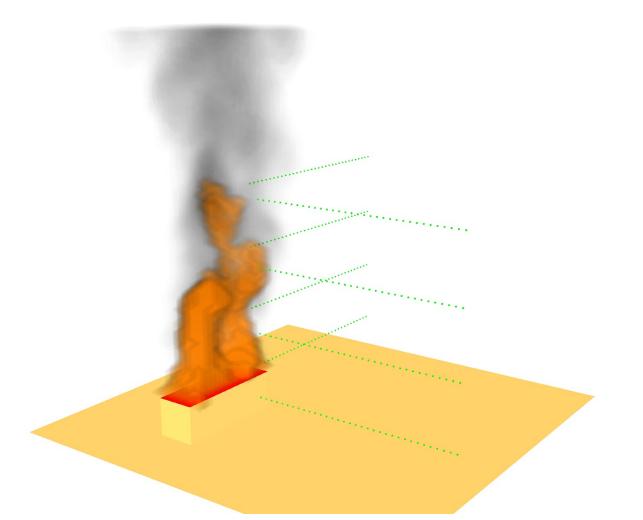
Courtesy, Combustion Science and Engineering

Appendix A: Notation, 🙁 🔤 Phone Director	ry Search × 🔿 Testing Pull Requests · fi × 👩 Inconsistent H	WAC Fan × Fire Model Survey × Take a screen capture								
@www.firemodelsurvey.com/ZoneModels.html		♥ C Q take snapshot of windows window → ☆								
		rnational Survey of odels for Fire and Smoke								
Home Friedman article New survey article	ZONE MODELS Red text indicates a link									
Updated survey results Contact Us	Actively Supported									
Select A Model:	ARGOS (2014)	B-Risk (2014) (2013)								
Zone Field Detector Response	CFAST/FAST (2014) (2007) (2002)									
Egress Fire Endurance										
Miscellaneous	Archived									
Wildland Fire	ASET (2002)	ASET-B (2007) (2002)								
You will need Acrobat Acrobat Acrobat Acrobat Acrobat Acrobat Acrobat Acrobat Acrobat Acrobat Acrobat	BRANZFIRE (2014) (2013) (2007) (2002)	BRI-2								
survey model	CALTECH	CCFM.VENTS (Friedman 1992)								
	CFIRE-X (Friedman 1992)	CiFi (2002)								
	CISNV	COMPBRN-III (Friedman 1992)								
	COMPF2 (2002)	DACFIR-3								
	DSLAYV (2007) (2002)	FASTlite (2002)								
	FFM	FIGARO-II (2002)								
	FIRAC	FireMD								
	Firepro	FIREWIND (2002)								
	FIREX (2002)	FIRIN								
	FIRM (1983)	FIRST								

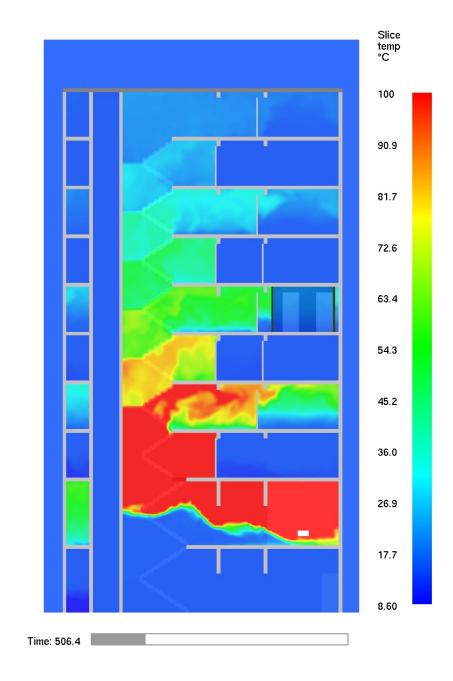


CFAST Graphical User Interface

				Num	Compartmen	t Fire	lgnition	by Set Point	X Position	Y Position	Z Position	Peak Q	•
				1	Comp 1	Tetra-Pro	pylene Time	0	2.5	3	0	509	
					Add New	Add t ²	Duplic	ata E	rom File		Pa	move	-
F	ire 1 (of 1)			_	Add New		Dupilo		Iom File			nove	
				Nam	e: Tetra-Propy	lene		Compartm	ent: Comp 1			•	
		C : 1	2		Combu	eat of 40000 k	J/kg	Posit	ion, X: 2.5 m	1		Ignition Criter	rion: T
		н: 2	6		Soot	Yield:		Posi	tion Y: 3 m			Set Poi	int: 0
		o: 0)		со	Yield:		Posit	tion Z: 0 m			Ignition Tar	get:
		N: 0)		TS	Yield:							
		CI:)		Rad Fra	tion: 0.35							
	Time (s)		IRR k₩)	Height (m)	Area (m²)	CO Yield	Soot Yield	TS Yield	F		Tetra	-Propylene	e: HR
	0		0.0	0.40	0.360	0.0250	0.043	0	E [· · · ·	· · · ·		- · ·
	16	1	16.0	0.40	0.360	0.0250	0.043	0		5			
	74	2	89.0	0.40	0.360	0.0250	0.043	0	400	1			
	151	3	31.0	0.40	0.360	0.0250	0.043	0			\		
	214	4	94.0	0.40	0.360	0.0250	0.043	0	ſ	1			
	275		07.0	0.40	0.360	0.0250	0.043	0	200	1			
	323		09.0	0.40	0.360	0.0250	0.043	0		l I			
	359		98.0	0.40	0.360	0.0250	0.043	0	ti i			1	
	442		92.0	0.40	0.360	0.0250	0.043	0	04			Ĺ	
	499		93.0	0.40	0.360	0.0250	0.043	0	L		500		1000
	568	2	33.0	0.40	0.360	0.0250	0.043	0	÷ 0		500		



CFAST in Smokeview

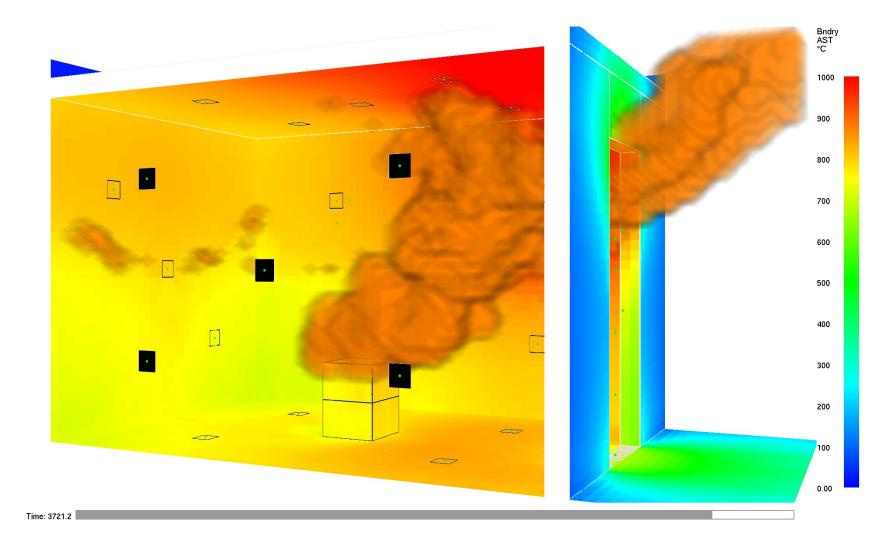

Radiation Measurements

Rob Fleury and Mike Spearpoint U of Canterbury, New Zealand

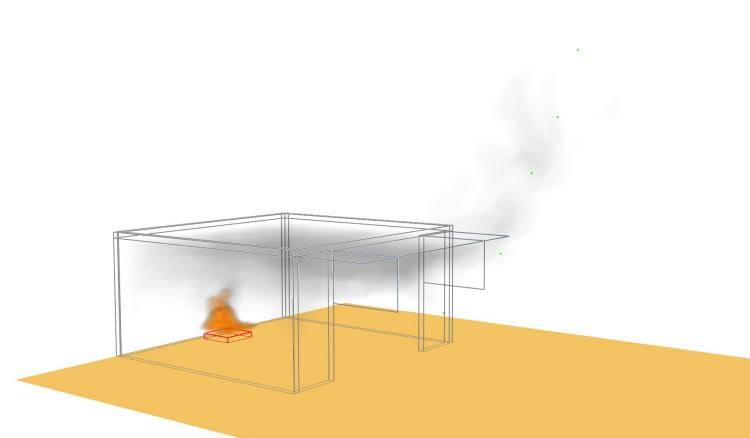
4

Smoke Movement in Stairwells

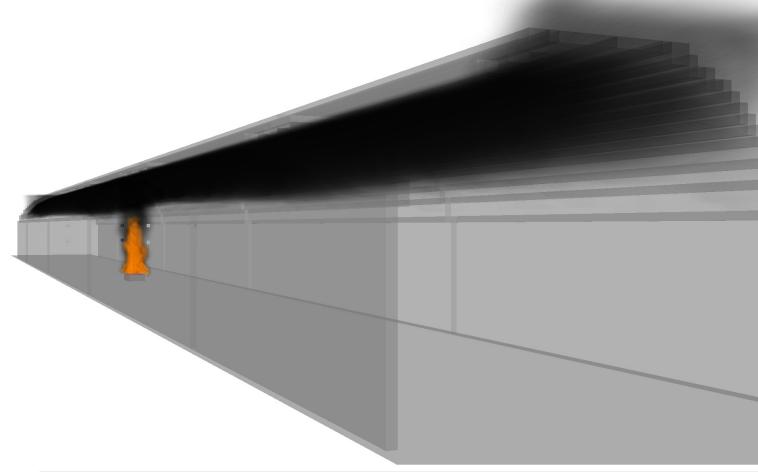
Modeling: Paul Tyson, U of Ulster **Experiments**: Cathy Wang, National Research Council, Canada


Ventilation Effects

Modeling: Jonathan Wahlqvist, Simo Hostikka, Topi Sikanen Experiments: OECD PRISME Project


Adiabatic Surface Temperature and Plate Thermometers

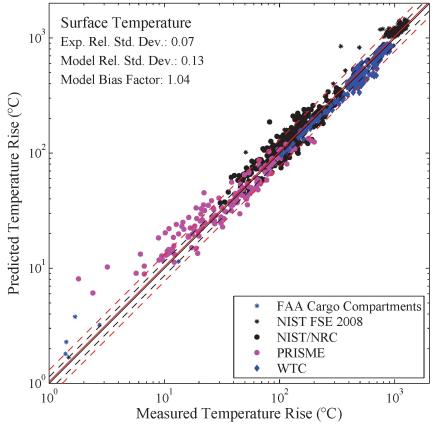
Modeling: J. Sjöström, U. Wickström, A. Byström **Experiments: SP Sweden**



Spill Plumes

Roger Harris and Mike Spearpoint U of Canterbury, New Zealand

Tunnel Fires


Gabriele Vigne and Jimmy Jönsson, ArupFire

FDS Validation Guide

Table 15.1: Summary statistics for all quantities of interest

Quantity	Section	Datasets	Points	$\widetilde{\sigma}_{\rm E}$	$\widetilde{\sigma}_{M}$	Bias
HGL Temperature, Forced Ventilation	5.16	5	132	0.07	0.20	1.15
HGL Temperature, Natural Ventilation	5.16	11	191	0.07	0.07	1.05
HGL Temperature, No Ventilation	5.16	3	32	0.07	0.12	1.16
HGL Depth	5.16	10	198	0.05	0.05	1.04
Ceiling Jet Temperature	7.1.17	17	947	0.07	0.14	1.05
Plume Temperature	6.1.7	8	107	0.07	0.16	1.18
Oxygen Concentration	9.1.9	8	160	0.08	0.15	0.99
Carbon Dioxide Concentration	9.1.9	9	157	0.08	0.12	0.99
Smoke Concentration	9.2.2	1	14	0.19	0.60	2.54
Compartment Over-Pressure	10.6	4	75	0.17	0.17	0.91
Target Temperature	11.2.6	7	1258	0.07	0.17	1.02
Surface Temperature	11.1.7	5	1009	0.07	0.13	1.04
Target Heat Flux	12.2.5	5	348	0.11	0.26	0.99
Surface Heat Flux	12.1.10	7	633	0.11	0.22	0.99
Velocity	8.10	7	222	0.08	0.09	0.99
Sprinkler Activation Time	7.2.1	5	232	0.06	0.16	0.95
Smoke Detector Activation Time	7.3	1	142	0.27	0.27	0.58
Smoke Detector Activation Time, Temp. Rise	7.3	1	142	0.33	0.33	1.02
Cable Failure Time	11.2.7	1	35	0.12	0.15	1.14
Sprinkler Actuations	7.2.2	3	38	0.15	0.30	0.87
Burning Rate	14.8	3	47	0.08	0.39	1.01
Carbon Monoxide Concentration	9.3.5	5	69	0.19	0.41	0.93

