A COMPARATIVE STUDY OF FIRE SAFETY PROVISIONS EFFECTING EVACUATION SAFETY IN A METRO TUNNEL

Andrew Purchase Karl Fridolf Daniel Rosberg

Background

→ Metro tunnels

- Geometrically simple a tube / box
- Aerodynamically complex train movements, vent, winds, etc.

→ Fires on trains in rail tunnels

- Continue to the next station
- Not always possible to reach station
- Unlikely event, but generally credible enough to design for a train fire in a tunnel

Source: https://upload.wikimedia.org/wikipedia/commons/e/e9/ Stockholm_metrosystem_map.svg Accessed 2016/10/19, reproduced under CC licence CC BY-SA 3.0

Source: https://en.wikipedia.org/wiki/Tunnel#/media/File: A_crossover_on_the_south_side_of_Zhongxiao_Xinsheng_Station.JPG Accessed 2016/10/19, reproduced under GNU Licence V 1.2.

What are 'typical' rail tunnel evacuation provisions?

- Survey of tunnels around the world
- → Some provisions are typical:
 - Walkways with emergency lighting to assist with evacuation
 - Regular exits once tunnels are over a certain length

\rightarrow Some provisions vary:

- Longitudinal ventilation for smoke control
- Walkway width: 0.7m 1.5m
- Walkway elevation: track or train floor level
- Spacing of exits: 240m to >500m

Source: Author

Source: Author

Why the variation in typical provisions?

→ Many reasons, for example:

- Standards for a particular jurisdiction
- Each system has it's own nuances
- Difference in opinion / perceptions of safety
- Driven by performance based design
- Maintaining a strategy within a wider system
- Stakeholder requirements, etc. etc.

- But, can be misleading / confusing when a provision is viewed in isolation
 - Question: "Why do / don't we have this provision?"
 - Other disciplines may not appreciate the implications of a change

NFPA

2017

Standard for Fixed Guideway Transit and Passenger Rail Systems

Purpose and use

→ What are you trying to achieve?

Investigate a range of tunnel evacuation design configurations and the impact that these have on occupant safety. Focus on metro tunnels.

\rightarrow How do you do this?

CFD and evacuation modelling with results compared on the basis of visibility and the accumulated FED regarding asphyxiates.

→ What are the limitations?

Applies <u>only</u> to a specific set of inputs, assumptions and engineering simplifications.

→ How can I use this?

Comparative set of results that can be used by fire safety designers when developing their own options for further assessment.

Source: Author

Source: WSP Stock Photo

Scenario selection

→ 12 CFD simulations, 144 evacuation scenarios

	CFD Scenario Para	ameters	5		
	Fire location in train	-	Front	Middle	Back
	Fire size	MW	2	5	>10
	Fire growth rate	$\rm kW/s^2$	0.003	0.012	0.047
	Tunnel grade	%	-4	0	+4
	Tunnel velocity	-	No velocity	2m/s wind [†]	Critical velocity
	Tunnel area	$\rm m^2$	22	28	45‡
	Evacuation Scenari	o Para	meters		
	Walkway width	\mathbf{m}	< 0.8	0.8	1.2
	$Pre\text{-}movement \diamond$	\mathbf{s}	120	240	360
	Occupant load	р	600	900	1200
	Exit separation	m	240	300	500
	Walkway elevation	-	Track	Semi	Elevated
	† Modeled as a pressu	re boun	dary	rack geometry	
	\diamond Agents in the fire ca	r, other	agents have a	a pre-movemer	t time of $+120s$
-	EXIT 1		DISTANCE VARIES = 240m, 300m, 500m		EXIT
OPEN, PRESSUR VELOCITY BOUN	PEN, PRESSURE OR ELOCITY BOUNDARY				Exit
	FIRE 50m FR				+ GRADE

CFD modelling

- → FDS Version 6
- \rightarrow 900m long tunnel allows for 140m long train and 500m(+) exits
- → Two tunnel cross-sections: 22m² and 28m² free area
- → Devices for tenability assessment Visibility, temperature, etc.
- \rightarrow Visibility results interpreted as space (X) vs time (T) figures
- \rightarrow Snapshot of results in following slides

Visibility – walkway elevation

→ 22m² cross-sectional area, still air, 0% grade tunnel

Visibility – variation in tunnel grade

\rightarrow 22m² cross sectional area, still air, elevated walkway

Visibility – longitudinal smoke control

 \rightarrow 22m² cross sectional area, 0% grade, elevated walkway

Visibility – walkway elevation, longitudinal smoke control

 \rightarrow 22m² cross sectional area, 0% grade

Evacuation modelling

→ 1-D evacuation model

- Purpose-built for rail tunnel evacuation
- Developed in Perl, allows for easy scripting
- Allows reduction in walking speed with reduced visibility
- → Flow rate along walkway (Lundström et al.)

Flow rate of people $[p/s] = 1.27 \cdot walkway \ width[m] + 0.07$

→ Flow rate along walkway with train (BBRAD)

Flow rate of people $[p/s] = 1.2 \cdot walkway \ width[m]$

 \rightarrow Walking speed in smoke (Fridolf et al.), x = extinction coefficient

Walking speed $[m/s] = -1.1423 \cdot x + 1.177$

- Walking speed = f(crowding, flow rate, visibility, agent characteristics)
- Snapshot of results see paper for more
 - 22m² tunnel with 800mm walkway
 - 28m² tunnel with 1200mm walkway

Maximum FIDs

→ Highest

- 500m exits
- Elevated
- 22m² tunnel

→ Lowest:

- 240m exits
- Track-level
- 28m² tunnel

→ Spread

 varies with grade, velocity conditions, area

Number of exposures to $FID \ge 0.3$

Highest

- 500m exits
- Elevated
- 22m² tunnel

→ Lowest:

- 240m exits
- Track-level
- 28m² tunnel

→ Spread

 varies with grade, velocity conditions, area

Low visibility exposures (<5m for >10 minutes)

BLUE = 0% grade track, RED = 4% grade track

□ Still air conditions

• Pressure boundary, 2m/s portal wind

△ Critical velocity

- Outcomes not always clear with different velocity conditions
- Still air generally worse for short exit distances
- Airflow (forced or grade effect) generally worse for long exit distances

Total evacuation time

BLUE = 0% grade track, RED = 4% grade track

□ Still air conditions

O Pressure boundary, 2m/s portal wind

△ Critical velocity

1200mm walkway width, 28m2 tunnel cross-section

- Evacuation times increased with increasing exit spacing, reduced walkway width
- → Longer times with elevated walkway due to reduced speed in lower visibility
- Improved with larger tunnel crosssection

Conclusions

→ Outcomes likely obvious to an experienced practitioner

Maybe not to stakeholders or other design disciplines

\rightarrow In general, and specific to the modelling undertaken:

- Increase exit spacing, reduce walkway width ~ reduces tenability
- Decrease exit spacing, wider / low-level walkway ~ increases tenability
- Tunnel grade and tunnel area have a noticeable effect
- Outcomes with different velocity conditions are not always obvious

→ So what is the 'best' configuration?

- Depends on the specifics of a project
- Perspectives: Highest level of fire safety = cost effective? Probably not.

\rightarrow Trade-offs to arrive at an optimal solution \rightarrow value in modelling

Thank you!

andrew.purchase@wspgroup.se

