

Fire Scenarios Assessment

Kristian Börger BFT Cognos GmbH Gregor Jäger BFT Cognos GmbH

Introduction

 Performance-based fire safety design is not explicitly embedded in German building codes

Major knowledge is closely linked to prescriptive design approach

Germany

- 16 local building codes
 - 16 local regulations for:
 - Assembly
 - Industrial buildings
 - High-rise buildings
 - Garage
 - Shop and mall
 - Electrical facilities

Performance based fire safety design in Germany

- Directive for industrial buildings in conjunction with DIN 18230 since 1978
- German Fire Protection
 Association (GFPA): Guideline Fire
 Protection Engineering
 since 2005
- Engineering and/or expert judgement

Standardization activities in Germany

DIN working committee NA 005-52-21 AA "Brandschutzingenieurverfahren" (Fire safety engineering)

- DIN 18009 Part 1 (2016:09)
 Fire safety engineering:
 Basic principles and codes of practice
- DIN 18009 Part 2 (in progress)
 Fire safety engineering:
 Evacuation and life safety
- DIN 18009 Part 3 (in progress)
 Fire safety engineering:
 Fire scenarios

Performance criteria

Fire safety goal

Functional requirement and qualitative verification

Performance criteria for quantitative verification

	•	
Prevent the spread of fire and smoke	Limitation of the fire effects to one utilization by - Fulfillment of material demands on partitioning structural elements - Proof of fire effects	 Test criteria for integrity and/or smoke tightness Minimum distance to adjacent building Norm specifications for room closing components Maximum temperature or heat radiation
		[vfdb]

Performance criteria

- Ensuring a safety level in accordance with building regulations
- Influencing variables must be selected based on sufficiently conservative assumptions or have to be varied within parameter studies

$$R \cdot \gamma_R \ge A \cdot \gamma_A$$

Selection of design fire scenarios

Workflow Part 1 - 3

Workflow Part 3-4

Workflow Part 4-6

Scenario based design

Scenario based design – bagatelle and worst case scenarios

Scenario based design – selection of relevant scenarios

Fire modeling – design fire

Design fire is characterized by:

- Maximum fire surface
- Fire load density
- Heat release rate
- Fire spread rate

Application example

- Three-storey building
- Differently used areas:
- Ground floor:
 - Lobby
 - Restaurant
 - Offices
- 1st/2nd floor:
 - Offices
 - Meeting/conference
- Two independent stairwells
- Atrium with open stairs

Ground floor

1st/2nd floor

Project scope and goals

Fire safety goals can be derived from the requirements of MBO:

- Prevent the fire from starting
- Prevent the spread of fire and smoke
- Enabling of escape and rescue
- Enabling of effective firefighting measures

R 90 can not be guaranteed without further evidence

Exploration of fire scenarios

- Defective electrical equipment and misbehavior of persons can be identified as possible causes of fire
- Fire scenarios which result in a high thermal load of the roof structure should be considered

Design fire and safety concept

Annual probability of occurrence for an initial fire in an utilization unit	p_1	6.2x10 ⁻³
Probability of the failure of firefighting measures by users		0.5
Probability of the failure of firefighting measures by the fire brigade		0.2
Probability of the failure of firefighting measures by an automatic extinguishing system		1.0
Permissible failure probability		1.3x10 ⁻⁵

Probability of occurrence of a destructive fire in a utilization unit (1 year)

$$p_{fi} = p_1 \cdot p_{2,1} \cdot p_{2,2} \cdot p_3 = 6.2 \cdot 10^{-3} \cdot 0.5 \cdot 0.2 \cdot 1 = 6.2 \cdot 10^{-4}$$

Conditional failure probability in case of fire and linked reliability index

$$p_{f,fi} = \frac{p_f}{p_{fi}} = \frac{1.3 \cdot 10^{-5}}{6.2 \cdot 10^{-4}} = 2.097 \cdot 10^{-2}$$

$$\beta_{fi} = -\phi^{-1}(p_{f,fi}) = -\phi^{-1}(2.097 \cdot 10^{-2}) = 2.034$$

Design fire and safety concept

$$\gamma_{fi} = \frac{1 - V \cdot 0.78 \cdot [0.5772 + ln(-ln(\phi(\alpha \cdot \beta_{fi})))]}{1 - V \cdot 0.78 \cdot [0.5772 + ln(-ln(0.9))]}$$

Design fire and safety concept

Input parameters as 90% quantile

$$q_{fk} = 584 \ MJ/m^2$$

$$RHR_f = 0.25 \ MW/m^2$$

Design values of fire load density and heat release rate:

$$q_{f,d} = \chi \cdot q_{f,k} \cdot \gamma_{fi,\dot{Q}} = 0.8 \cdot 584 \ MJ/m^2 \cdot 0.981 = 458.3 \ MJ/m^2$$

$$\dot{Q}_{max,d} = A_f \cdot RHR_f \cdot \gamma_{fi,\dot{Q}} = 379m^2 \cdot 0.25 \ MW/m^2 \cdot 0.986 = 93.42 \ MW$$

Conclusion and outlook

- Working steps by DIN 18009-1 can only be regarded as indications for a performance-based design
- Boundary conditions should cover all conceivable fire events
- Decision whether or not an fire safety goal is fulfilled by a computational evidence is with the approving authority
- Equivalence of computational evidence with descriptive specifications would be desirable

BFT Cognos GmbH

Sachverständige, Berater, Gutachter

Questions?