1.

EXPLORING UNSTRUCTURED
POISSON SOLVERS
FOR FDS

Dr. Susanne Kilian

hhpberlin, Ingenieure fiir Brandschutz GmbH, 10245 Berlin
s.kilian@hhpberlin.de

Abstract. Many presently employed Poisson solvers which offer a suf-
ficient amount of computational efficiency and robustness are limited to
the use of regular geometries and corresponding grid structures. This re-
striction can affect the precise representation of complex fire scenarios in-
volving complex bodies and flow obstructions. Usually, their parallel ap-
plication in the context of multi-core architectures contributes to a further
impairment. The current solver for the Poisson equation in FDS is based on
the use of local FFT methods on the single meshes of the underlying domain
decomposition. This approach has proven to be computationally efficient
and accurate in a multitude of cases. But due to its restriction to rectilin-
ear meshes and its purely local character, there are two possible drawbacks,
namely the presence of velocity errors based on penetrations into immersed
obstacles as well as possibly large velocity errors along mesh interfaces. In
order to face this challenge several alternative Poisson solvers of direct and
iterative type are examined which basically apply global solution strategies
spanning over the whole domain decomposition. Furthermore, their abil-
ity to deal with unstructured grids along with the exact setting of boundary
conditions on internal obstacle surfaces shall be analyzed. The paper and
its associated talk are intended to give some insights into the current state
of development and to compare the pros and cons of the different Poisson
approaches with respect to their efficiency and accuracy.

MOTIVATION

The efficient solution of the Poisson equation for the pressure is an es-
sential part in many CFD codes for the simulation of realistic flow phenom-
ena. There are two main classes of numerical solvers for the Poisson equa-
tion, namely direct and iterative ones, with various representatives each. Both
classes differ comprehensively in view of the underlying algorithmic approach
which strongly influences their applicability and efficiency for different types

of problems.

mailto:s.kilian@hhpberlin.de

The numerical simulation of fire scenarios with respect to their high geo-
metric complexity and extreme computational requirements represents a par-
ticular challenge when selecting a suitable pressure solver. This also holds true
for FDS where the different choices are associated with several advantages and
disadvantages which have to be weighed carefully against each other.

A basic design feature of FDS for the representation of the underlying ge-
ometry is the use of one or more cubic blocks (meshes) based on rectilinear
grid decompositions each. Objects like walls or other obstacles internal to
these meshes are mapped as rectangular shapes conforming with the underly-
ing mesh grid.

Currently, the solution of the FDS Poisson equation is achieved by a rep-
resentative of the direct Poisson solvers, namely a highly optimized blockwise
Fast Fourier Transformation (FFT) solver which is part of the solver package
CRAYFISHPAK [1]: On every single mesh a local FFT is performed which
produces a correct solution (up to machine precision) to the related local Pois-
son problem. Then, the local solutions are clustered together to a global one by
means of an interconnecting process along the mesh interfaces. This strategy
has proven to be extremely fast and robust for many different constellations.

But the use of the FFT-solver is basically restricted to structured meshes.
Therefore, all cells internal to immersed obstacles must be included into the
system of equations which may lead to non-zero normal components of veloc-
ity at internal obstacles even in case of solid boundaries with no mass transfer.

In order to compensate this ’penetration’ an additional iterative Direct
Forcing Immersed Boundary Method [2] is used. In every time step it requires
the repeated blockwise FFT-solution of the Poisson equation until a specified
tolerance for the velocity error along internal objects has been reached.

A similar strategy comes into effect along mesh interfaces, because the
mentioned interconnection process namely produces a continuous global Pois-
son solution but isn’t able to guarantee that the normal components of velocity
match there, too. In the worst case this "velocity-correction’ method may con-
verge slowly along with a comprehensible increase of computational costs.

Finally, the purely blockwise execution of FFT methods doesn’t take suf-
ficient account of the intrinsically global character of the physical pressure
which spreads local information immediately over the whole domain. In case
of big geometries with many meshes (i.e. tunnels) and/or transient boundary
conditions this strategy may experience difficulties to reproduce this strong
overall data coupling fast enough.

In order to get rid of these drawbacks, some other Poisson solvers are taken
into account for the solution of the FDS pressure equation:

* a direct solver, namely the shared-memory multiprocessing Parallel Direct
Sparse Solver (Pardiso) of the Intel Math Kernel Library (MKL), and its
version for Cluster Interfaces (Cluster_Sparse_Solver),

* some iterative solvers based on Scalable Recursive Clustering (ScaRC) which
combine techniques of Conjugated Gradient Methods (CG) and Geometric
Multigrid Methods (GMG) with optimized preconditioning or smoothing.

Both variants are able to scope with unstructured meshes such that cells
internal to obstacles can now be omitted from the system of equations and
the correct internal boundary conditions can be set. Furthermore, they both
manage to compute the correct normal components of velocity along the mesh
interfaces. In total, there is no need to apply additional velocity-correction
procedures any more.

However, the computational costs for all considered variants may be far
higher compared to the current FFT-solver depending on the underlying con-
stellation. Therefore, the proper choice of the Poisson solver for a given ap-
plication requires a sensible consideration of the specific advantages and dis-
advantages. To provide a basic overview, the different solution techniques will
be explained in more detail and analyzed with respect to their accuracy and
scalability properties as well as their computational costs below.

2. DIFFERENT POISSON SOLVERS

2.1. The Poisson equation for the Pressure

Based on its non-conservative formulation, the momentum equation can
be simplified by a series of substitutions to

d
a—ltl+F+V}[:0 . F—Fs+F3. 1)

Taking the divergence of equation (I]) the pressure equation of FDS reads as

d(V-u)

2 —
Vi = ot

—V.F.)
The pressure term # = |u|?/2+ j/p includes the velocity field u, the density
p as well as the perturbation pressure p by which the fluid motion is driven.
The force term F is defined as sum of an advective term F and a baroclinic
term Fp. Note that Fg also contains the perturbation pressure p which is taken
from the last computed A during time iteration.

The main advantage of the mentioned simplification process is that the sys-
tem of equations arising from equation (2 has constant coefficients (i.e. is sep-
arable) which allows the use of fast, optimized solvers for uniform grids as the
already mentioned FFT solver above. For a detailed derivation of the pressure
equation see the FDS Technical Reference Guide [3l]. From a mathematical
point of view this so-called Poisson equation is an elliptic partial differential
equation of second order for which different types of boundary conditions i.e.
for open and solid boundaries must be specified.

The numerical time-stepping scheme in FDS, an explicit second-order pre-
dictor/corrector scheme, requires the solution of equation (2)) at least twice per
time iteration. Because of its strong interaction with the calculation of all other
thermodynamic quantities, the solution of the pressure equation is an essential
step in the whole time marching scheme and must be treated very efficiently.

Due to the mathematical theory, a purely local approach isn’t sufficient
to reproduce the global data dependencies for elliptic problems. Increasing
the number of subdomains will worsen the convergence rate, possibly up to
divergence at a (problem-dependent) critical number of subdomains.

To find a remedy, a domain-spanning correction process should be used
which is able to couple the local solutions and spread global information all
over the domain.

2.2. Discretization of the Poisson equation

Based on a subdivision of the underlying geometric domain €2 into cubic
subdomains Q,,, m = 1,..., M, with rectilinear grid decompositions each, the
spatial derivative of # in equation is now discretized by a second-order
accurate finite difference method. Note that scalar quantities in FDS such as
the pressure are assigned in the center of the single grid cells.

Now, the discretized form of the Poisson equation reads as

%+l,jk*2}6jk+}lz;],jk+%,j+l,k*2}l;jk+%,j71,k+}[;j,k+l*ZﬁijFHj,kfl

dx2 dy? 872
_ R —Fivg BBk Fuie—Fijeer éw.u)ijk
ox dy Oz ot
3

where different discretizations for the time derivative of the divergence are
used in the predictor and corrector step of the time marching scheme, see the
FDS Technical Reference Guide [3]).

In the single-mesh case which is based on a subdivision of Q into n grid
cells, this discretization process leads to the following system of equations

Ax=b, 4)

where x, b are vectors in R” and A is the well-known 7-point matrix in R"*"
with its 5-point counterpart in 2D as indicated in figure (I). Note that the
vector x corresponds to the single components of #;j; and b to the right hand
side entries of equation (3)) for short.

-

Figure 1: Five-point matrix stencil for equidistant grid size /4 in 2D

In the multi-mesh case, there are M local systems of equations
ApXm = by m=1,....M, 5

where each subdomain Q,, has n,, local grid cells. Here, A,, € R"*"n is the
local system matrix on subgrid €, with corresponding local solution vector
Xp, and right hand side vector b,, in R" each. Informally spoken, A,, is the

restriction of the global matrix A to the subdomain Q,,, i.e. A, ~ ”A o .

2.3. Direct versus Iterative Poisson solvers

Typical approaches for the solution of the Poisson equation belong either
to the class of direct or iterative solvers whose basic properties will be shortly
summarized below.

2.3.1. Direct solvers

Direct solvers compute the solution of the system of equations () in only
one single computational cycle which may be very complex. Two prominent
representatives, which will be of importance subsequently, are:

e LU-factorization

Within the framework of the Gaussian elimination algorithm, many direct
algorithms are based on the computation of the LU -factorization for a per-
mutation of the system matrix, PAQ = LU, with suitable permutation matri-
ces P and Q and the lower and upper triangular matrices L and U.

The solution of () can then be obtained using a forward substitution step,
Ly = PTb, followed by a backward substitution step, U(Q7x) = y. If A is
symmetric a Cholesky factorization, PAPT = LL”, can be applied.

The whole process can be subdivided into three phases: (i) a reordering
phase where the matrix is analyzed to produce an ordering of the matrix
which allows a more efficient factorization, (ii) a factorization phase where
the LU -factorization is actually computed and stored, (iii) a solution phase
where the forward and backward substitution is performed. Typically, the
factorization phase (ii) requires the most computing time while the solution
phase (iii) is an order of magnitude faster.

Usually, these solvers are performed with enormous speed and used for the
demonstration of potential computer power, see the LINPACK-tests by Don-
garra et al. [4].

They have proven to be very robust even in the non-symmetric and ill-
conditioned case. Besides, they are nearly independent of the degree of grid
distortion (except of rounding errors) and well suited for the application on
unstructured grids.

A main disadvantage is that less benefit can be drawn from a very convenient
property of the discretization matrix A, namely its intrinsic sparsity: Even
though A has only very few non-zero entries compared to the total number
of possible entries n”, the LU-factorization process leads to fill-in, i.e. pro-
duces non-zero entries in L and U where A was zero before. The computing
and storing of both triangular matrices can become prohibitively expensive,
especially in case of huge systems of equations with hundreds of millions
of unknowns. In view of the computational efficiency of LU-methods for a
given application the resulting fill-in is a decisive criterion.

¢ Fast Fourier Transformation

Spectral solvers like the Fast Fourier Transformation exploit a very special
property of the underlying Poisson problem, namely that sine and cosine
functions are eigenvectors of the Laplace operator. They expand the solution
as a Fourier series which can be quickly performed at rather low complexity.
In practice, this approach has proven to be highly efficient and is used in
many different fields of application. But in contrast to the LU-approach,
they are restricted to structured grids which may impede the use for complex
geometries.

Both, the LU- and the FFT-solvers, are based on highly recursive algo-
rithms which strongly couple the overall data of the whole domain. For single-
mesh applications this design principle very good reflects the mentioned global
character of the pressure. However, for multi-mesh applications the subdivi-
sion into single meshes causes a fragmentation of its physical connectivity
which inevitably leads to dependencies on the number of meshes and possibly
large deteriorations of the resulting efficiency and/or accuracy.

To diminish this effect, the basic methods can be combined with additional
strategies. For instance, in FDS the local FFT-solutions are embedded into an
iterative update for the velocity components coupling the local solutions by
averaging coincident values of the normal velocity at adjacent mesh interfaces.
Nevertheless, for problems of moderate size, especially if only less meshes
are used, direct solvers may be incomparably fast and should generally be
preferred to iterative ones.

2.3.2. Iterative solvers

In contrast to direct solvers, iterative solvers perform multiple computa-
tional cycles producing a sequence of iterates which gradually improve an ini-
tial estimate of the solution until a specified tolerance has been reached.

Usually, they are easier to implement than direct ones, because they can
be reduced to a series of core components such as matrix-vector multiplica-
tions, linear-combinations of vectors, scalar-products, etc. for which highly
optimized program packages may be used, e.g. BLAS [3]].

The computational complexity associated with each single cycle is com-
prehensively less compared to direct methods. Thus, the decisive question is
how many cycles are needed for convergence.

Because iterative methods don’t produce any fill-in, they preserve the spar-
sity structure of the system matrix and are much less demanding with respect
to storage than direct methods.

However, iterative methods may depend on special properties of the un-
derlying problem such as symmetry or positive-definiteness. Convergence can
be very slow for ill-conditioned problems such that many iterations must be
performed to reach the specified tolerance. Furthermore, they often require the
optimal choice of different methodical parameters which are highly problem-
dependent and difficult to predict.

The rate of convergence usually depends on the grid resolution, but can be
considerably improved by a suitable preconditioning matrix B € R"™" which
transforms the original system Ax = b into an equivalent system B~ 'Ax=B~'b
which may be solved much faster. The more special properties of the given
application can be incorporated into B, the better the convergence is, but the
higher the computational costs are, too.

Based on B, the core component of an iterative method is a simple defect
correction scheme, the so-called basic iteration, x* = x*~! — @B~ (Ax*~! —b),
used to minimize the defect d*~! := Ax*~! — b, which indicates how good
Ax = b is fulfilled by the current iterate x* (measured in a suitable norm).
Here, x*,x*=! are vectors in R” with an initial guess x°, and ® is a relax-
ation parameter which must be chosen very carefully. Simple candidates for
B are Byj,y ~ “diagonal of A”, which corresponds to the Jacobi scheme, or
Bysor ~ “lower triangular part of A”, which corresponds to the Gauss-Seidel
scheme.

On its own, the basic iteration is inefficient and takes many iterations to
produce a reasonable solution. But the single representatives can be embedded
into much stronger surrounding schemes:

* Conjugate gradient methods

CG-methods belong to the class of Krylov subspace methods and rest upon
the minimization of the equivalent problem F(x) = 1/2x7Ax —xTh — 0
by using mutually conjugate directions such that the search directions to-
wards the minimum are continually improved and the minimum is obtained
in at most n steps. CG-methods are restricted to symmetric positive-definite
problems and only need less storage space for several auxiliary vectors.
They are largely based on matrix-vector multiplications which only require
computationally cheap data-exchanges between neighboring meshes. Be-
sides, they also make use of global scalar products using data-exchanges
between all meshes which are computationally expensive but also contribute
to a stronger global coupling.

¢ Geometric multigrid methods

GMG-methods use a complete hierarchy of grids with
different resolutions and are able to achieve fast conver-
gence rates independent of the grid size with moderate
computational complexity. The basic idea is to improve
the convergence speed of the basic iteration by cor-
recting the defects on successively coarser grids whose
data are interpolated between each other. This process
explicitly takes advantage of the so-called smoothing
property of the single representatives of the basic iter-
ation, namely that they smooth out the high frequent
error components very fast.

Both, CG- and GMG-methods, are able to reasonably improve the conver-
gence speed of the basic iteration returning the exact solution in a moderate or
even small number of iterations depending on the underlying problem. For a
detailed overview of iterative methods see Saad [6].

With regard to an efficient parallelization, iterative methods seem to be
much easier and more universally applicable than direct ones. In the context
of domain decomposition a natural choice for preconditioning is the block-
wise solution of the local mesh problems known as Schwarz preconditioning,
see Xu [7]]. But again, this approach necessarily leads to dependencies of the
number of meshes which can impair the speedup especially for massively par-
allel applications.

2.4. Structured versus unstructured discretization

The appropriate treatment of the boundary conditions is of major impor-
tance for the accuracy of the whole numerical solution of the pressure equation.
There are two different classes of boundaries conditions which must be speci-
fied at mesh faces matching with the borders of the computational domain:

* Dirichlet boundary conditions

This type of boundary condition is applied to open boundaries, where the
fluid motion into or out of the domain is driven by the pressure gradient. In
this case a value for A itself must be specified at corresponding grid cells.

¢ Neumann boundary conditions

This type of boundary condition is applied to internal solid obstructions as
well as external faces which are entirely determined by a forced flow or a
solid. In this case a value for the normal gradient 0 /on must be specified
at corresponding grid cells.

If there is a mix of open and solid surfaces along an external face, the
specification of the Dirichlet condition is given precedence to the Neumann
condition (i.e. it is more important to specify # itself than its gradient).

In case of a multi-mesh application the blockwise FFT method addition-
ally requires the specification of Dirichlet boundary conditions for cells at the
interface between adjacent meshes. In contrast to that, the LU-, CG- and
GMG-methods solve the corresponding global problem without the need of
extra settings at mesh interfaces.

As a member of the Neumann conditions the no-flux or forced-flow condi-
tion

oH duy,
on T Ty ©

is of special interest. F, denotes the normal component of F at vents or solid
walls and du, /ot the rate of change in the normal component of velocity at
a forced vent. In case of an internal obstruction based on a stationary non
reaction solid material, a homogeneous Neumann condition is present, i.e. the
right hand side of (6)) is zero.

The external boundary conditions for the forced in- and outflow are pre-
scribed by corresponding forced-flow Neumann conditions. For both, the struc-
tured and unstructured discretization, these external boundary settings are sim-
ilarly included to the discretization matrix and therefore not considered any
further.

If the mesh blocks are discretized including all solid obstructions within
the computational domain, cells internal to the obstructions are masked as
blocked cells. But without any exception, all of these cells are incorporated
into the resulting discretization matrix by applying the same matrix stencil all
over the domain. Thus, the matrix takes a highly regular shape such that opti-
mized solvers can be applied.

While the no-flux boundary condition is exact at external boundaries, it is
not possible to directly prescribe the homogeneous no-flux condition at inter-
nal boundaries. To reduce flow penetration into the obstructions, currently a
direct forcing method is applied in FDS. In each time step, this method requires
the repeated application of the blockwise FFT method until the normal com-
ponents of velocity are driven to within a specified tolerance. This approach
guarantees that the total flux into a given obstruction is always identically zero,
even if the normal components of velocity may contain small errors. For more
details see the FDS Technical Reference Guide [3].

The only way to get rid of these penetration errors is to discretize on cells
that belong to the gas phase only. Now, all cells internal to solid obstructions
are omitted from the discretization matrix. On gas cells which are directly
adjacent to the surface of an obstruction the proper boundary conditions are
explicitly specified and included to the matrix.

In contrast to structured case this strategy requires the usage of individ-
ual matrix stencils for the different grid cells depending on their location with
respect to obstructions. While the resulting discretization matrix has less en-
tries than before, it hasn’t a regular shape anymore and the choice of efficient
solvers gets much more difficult.

The different settings for the matrix entries in case of the structured and
unstructured approach are illustrated below. Figure (2) outlines a simple 2D

geometry with an angled obstruction and the resulting FDS velocity field.

inflow

2D-domain with obstruction FDS flow field

outflow

WY

o
e,
SN

—==

|
Al

Figure 2: Simple 2D test geometry

The differences get obvious for the treatment of the internal obstruction in

figure (3):

* In the structured case the single grid cells are numbered in a lexicographic
order including all cells within the obstruction and starting from the bottom
left cell up to the top right cell. Here, the cell indices are only determined by
the number of grid cells in the single coordinate directions. Based on this
regular numbering the connectivity graph of the matrix is clearly defined
and the same matrix stencil is applied for all grid cells which allows the
usage of the optimized FFT-solver.

In the unstructured case, there is no seamless numbering any more because
the obstruction is excluded from the numbering. Instead, an additional con-
nectivity list must be stored which specifies the neighborhood relations be-
tween the single grid cells. For every single cell an individual matrix stencil
must be applied which prevents the usage of the optimized FFT-solver. But
the unstructured discretization offers more flexibility and accuracy because
the correct boundary information along the internal obstruction is now in-
cluded into the system.

Both discretization strategies will be analyzed in the course of the fol-

lowing numerical tests, namely the structured variant in combination with the
FFT-method and the unstructured variant in combination with the LU-, CG-
and GMG-methods.

10

Structured discretization Unstructured discretization

50 51

o &l
oot || |0
e , e

Tl=
-

awol. L1l Geal Ll
RE RN)l

Figure 3: Matrix generation and grid numbering for different grid types

3. NUMERICAL TESTS

The presented classes of Poisson solvers will now be compared within a
series of numerical tests. The objective behind is to analyze how the differ-
ent direct and iterative solvers compete against the currently used direct FFT-
solver with respect to their accuracy and scalability properties as well as their
computational costs.

3.1. Basic Poisson Solvers

For the solution of the pressure equation in the predictor and corrector step
of each single FDS time step the following Poisson solvers will be considered:

* FFT(tol): Block-FFT with iterative velocity correction up to tolerance tol

(i) First, each mesh performs its own FFT-method to compute a local solu-
tion x,, = A, 'b,,m=1,...,M. The global solution is then built as com-
position of the local solutions including an averaging process at mesh inter-
faces, x = 21,‘,14:1 X -

(i1) Based on the resulting x it must be checked, if both, the normal velocity
components along internal obstructions and the differences of the normal
velocity components between neighboring meshes are below the specified
tolerance tol. If this is not the case, steps (i) and (ii) must be repeated.

11

Depending on the special test case different values for the tolerance tol will
be considered. As a mixture of local direct FFT-methods and an iterative
correction process this variant is a hybrid Poisson solver.

e MKL: Cluster interface of Intel MKL Pardiso solver

(i) During the FDS-initialization phase a global Cholesky factorization is
generated for the global discretization matrix A = Zj,‘n”:] A,,. This step in-
cludes the preceding computation of a suitable permutation of A which al-
lows a more efficient factorization than the original matrix itself.

(ii) In every FDS time iteration the solution of the Poisson equation is simply
based on a forward and backward substitution step on every single mesh
with respect to the stored factorization as described in Section [2.3.1

This variant is a purely direct Poisson solver. Note, that the factorization
must be recomputed if the geometric situations change during the simula-
tion (e.g. in case of disappearing obstructions). Otherwise the expensive
factorization phase is only needed once.

* ScaRC: Different representatives of Scalable Recursive Clustering

Either a global CG-method with blockwise preconditioning, ScaRC-CG, or
a global GMG-method with blockwise smoothing is applied, ScaRC-GMG .
Both, the preconditioning and smoothing are based on the application of

(i) local SSOR-methods with optimal relaxation parameter on the single
meshes (with 1 grid cell of overlap), or

(i1) forward and backward substitutions based on local L,,U,,-factorizations
(generated by local calls of Intel MKL Pardiso during initialization).

Depending on the special choices the resulting solvers are of purely iterative
or of hybrid type. If computational times for different ScaRC cases will be
listed below, they are always related to the fasted measured variant for the
current test case each.

In case of ScaRC-GMG different coarse grid solvers were tested, namely
an iterative global CG-method (up to rounding error) or a direct global
MKIL-solver, on the coarsest grid level each.

Table (1)) summarizes the basic properties of the upper solution strategies.

Method Grid Type
FFT(tol) structured hybrid
MKL unstructured direct

ScaRC-CG | unstructured | iterative/hybrid
ScaRC-GMG | unstructured | iterative/hybrid

Table 1: Properties of different Poisson solvers

12

The hybrid combination of local SSOR-smoothers with global MKL as
coarse grid solver within ScaRC-GMG only uses two grid levels, the original
fine grid level on which the iterative blockwise SSOR is used and the next
coarser grid level (with double grid size) on which the direct global MKL
solver is applied. Although the factorization and storing of the global LU-
decomposition for level 2 causes additional overhead again, it is only based on
an eighth of the grid cells compared the global MKL solver on the finest grid
level. This hybrid version is associated with the idea that an exact solution
on level 2 within the multigrid hierarchy still may contribute to good global
coupling but at comprehensively lower costs. Note that this strategy can also
be applied for 3 and more grid levels L where the blockwise smoothing is
applied on levels 1 up to L — 1 and the global MKL solver on the coarsest
level L. These combinations will be subject to future tests.

3.2. Basic Test Geometries

As illustrated in figure (@) the subsequent test computations are based on
two very simple test geometries:

* Cube™: a square-shaped domain without obstruction,
e Cube™: a square-shaped domain with obstruction.

Both cases use a forced constant inflow of 1m/s from the left (with a slight
ramping up at the beginning) and an open outflow on the right. Depending on
the test case, the cubes are subdivided into different numbers of cells, namely
243,483 96°,1923 2403 and 288°.

Cube: Cube without obstruction Cube™: Cube with obstruction

—

Figure 4: Simple square-shaped test geometries Cube™ and Cube™

13

For all shown test cases, the differences of the volume flow between in-
and outflow is measured over the whole simulation time as well as progress of
several quantities (e.g. velocity and pressure) in a couple of device positions,
indicated as green dots in figure (). These measurements are used to assess
the resulting accuracy for all solver variants.

3.3. Basic Domain Decompositions

In order to analyze the basic scalability and accuracy properties of the
different solvers, different subdivisions for Cube ™ and Cube™ into 1, 8 and 64
meshes are considered, see figure (3)).

1 Mesh 64 Meshes

ANl
™
N

JNCN

N

T

|
o N N -

) (NN

N
[IN]

SIr

Figure 5: Subdivisions into 1, 8 and 64 subdomains

The number of subdomains for the different geometries is indicated within
parenthesis, e.g. Cube ™ (8) denotes the subdivision of Cube™ into 8 meshes.

3.4. Test 1: FFT(tol) for different tolerances

The first test is related to the FFT(tol)-method for the Cube ™ -geometry. It
analyzes how fast the penetration error along the internal obstruction decreases
if the tolerance is driven towards zero using tol=10"2,107% to 107!6, for a
grid resolution of 24°. The same tests have also been performed for finer grid
resolutions.

Figure (6)) displays the velocity error along the internal obstruction, plotted
in a display range with a minimum of 10~!® each, with explicit specification
of the average number of pressure iterations needed to reach the required tol-
erances. Obviously, the correction iteration successfully reduces the velocity
error along the internal obstruction with decreasing tolerance up to rounding
error size.

But whereas only 1 pressure iteration is needed for the coarse tolerance of
tol=102, the number of pressure iterations increases comprehensively from
about 3 to 4 for tol=10~% up to 30 for tol=10"'6. Note again that this effort is
necessary twice a time step and that MKL and ScaRC (as unstructured-grid
based and globally working methods) automatically reach a tolerance of 101,

14

FFT(102) FFT(10°9) FFT(1016)

& 1 pressure iteration 3,5 pressure iterations &30 pressure iterations

Figure 6: Velocity error and number of pressure iterations for FFT(tol) on
Cube " (1) with 243 cells

The next interesting question is how the number of iterations is influenced
if the grid additionally is decomposed into single meshes. To this end Table (2)
compares the required number of pressure iterations for different Cube™ (M)-
cases, M = 1,8 and 64, at a grid resolution of 48> and a tolerance of tol=10"°.

In order to distinguish the costs only related to the reduction of the velocity
error along the internal obstruction from that for the reduction of the mesh
interface error, the corresponding results *without obstruction” for Cube™ (M)
are opposed.

Geometry Number of meshes M

1 8 64
Cube™ (M) 1 106 222
Cube™ (M) 8 123 254

Table 2: Number of pressure iterations for FFT(107%) in case of 483 cells and
different mesh decompositions

Apparently, the mesh decomposition causes a much higher rise of pressure
iterations than the internal obstruction does. Increasing the number of meshes
from 1 to 8 for Cube™, the number of pressure iterations rises up to 106, while
the additional internal obstruction in Cube™ (8) leads to another rise of only 17
iterations compared to Cube™(8).

A similar relation can be observed for Cube ™ (64) and Cube ' (64): Using
64 meshes instead of 1 mesh leads to an increase of 222 iterations for Cube™
due to the additional velocity correction along the mesh interfaces. In contrast
to that, the addition of the obstruction leads to only 32 more iterations, i.e. the
difference between 222 and 254.

15

3.5. Test 2: Average Poisson solution times for constant problem size

The following subsection is related to a comparison of all three Poisson
solvers, FFT(tol), MKL and ScaRC, with respect to the time typically needed
for the solution of one Poisson equation. All presented simulations have been
performed up to a final time of 0.5 seconds where the steady state has long
been reached due to the constant inflow. The times indicated subsequently are
the average times for all measured Poisson times during the whole simulation.

Note, that a fair time comparison is only possible if the accuracy of the
obtained solutions is at the same level for all considered variants. Thus, the
identification of a suitable tolerance for FFT(tol) which guarantees a compa-
rable accuracy with MKL and ScaRC is of great importance.

For the Cube™ (M) and Cube™ (M) cases it turned out that there is no
need to perform the velocity correction in FFT(tol) up to rounding error size
10716 to be comparable with the other solvers. In case of the constant inflow,
a tolerance of 1079 is typically enough to provide a sufficient accuracy related
to the mentioned device values and volume flow differences.

However, alternative tests have shown that considerably smaller tolerances
may be needed to guarantee a sufficient accuracy in more complex situations
e.g. for strongly transient inflow conditions or big numbers of meshes.

For the situation with constant inflow, figure (/) displays the average times
for Cube~(8) and Cube™ (8) at a grid resolution of 48 cells each.

0.45 T T T T

0.40 |

Geometry
B Cube”
+

0.20 =3 Cube

Average Time
o
N
w

FFT(102) FFT(104) FFT(10€) MKL ScaRC

Figure 7: Average Poisson solution times, Cube ™ (8) versus Cube™ (8)

In order to point out the resulting large differences in computing time,
three variants of FFT(tol) are listed, namely for the toleranced 10~2,10~%
and 107°, and faced with the MKL and ScaRC times. It is very evident that
FFT(1072) is by far the fastest method. In order to drive the velocity error
below a tolerance of 1072 only 1 pressure iteration has to be done in average.

16

Thus, the left both little bars in figure (7) reveal the computational time needed
for the pure FFT-method (without additional velocity iteration), however ac-
companied by the poor accuracy of 1072 along the obstruction and the mesh
interfaces.

With regard to the accuracy considerations above, a tolerance of at least
107¢ should be used for a proper comparison with the other solvers. For
FFT(10~%) however, the situation changes in favor of MKL having to the
best relation of computational time and accuracy, closely followed by ScaRC.

3.6. Test 3: Average Poisson solution times for growing problem size

Up to now both cube domains are associated with a fixed grid resolution of
483 and then subdivided into different numbers of meshes. To the same extend
as the number of meshes is increased for a given geometry, the communica-
tional overhead for the coordination of these meshes increases too, whereas
the computational load per mesh decreases correspondingly. Thus, each ad-
ditional mesh causes a slight impairment of the relation ’computation versus
communication’.

However, it doesn’t seem appropriate to use a multi-processor system for
the solution of a problem which already can be solved on a single-processor
system. Parallel computers should be used to solve huge problems which ex-
ceed single-processor capacities by summing up the computational powers of
many processors best possibly. Therefore, the next interesting question is, what
happens if the problem size is increased by the same relation as the number of
meshes is increased, keeping the load per processor at a constant level.

To this end, figure (8) compares the average times for Cube™(8) for a grid
resolution of 483 cells with that of Cube™(64) for a grid resolution of 963 cells.
Again, the three different tolerances 1072,10~* and 10~° are distinguished
for FFT(tol). Note that the values on the left correspond to the light blue
Cube ™ (8)-values in figure (7).

Cube*(8), 483 cells Cube™(64), 96° cells
0.45 35
0401]
3.0+
0.35
2.5
0301 Method
@ 025) D 2.0 = FFT(10°2)
[} 7] { i
E 0.20 E s I FFT(10 .)
= FFT(107")
0.15}
1.0 H MKL
0.10} - ScaRC
0.05} I osr
0.00 0.0 .

Method Method
Figure 8: Average times for 1 pressure solution, Cube™(8) versus Cube™ (64)

17

Cube ™ (64) is now based on 8 times as much grid cells as well as 8 times
as much meshes compared to Cube™(8) such that each single mesh has the
same load of 243 cells in both cases. Thus, one would expect nearly the same
computational times for both, at most slightly increased times for the 64-mesh
case due to the additional overhead for synchronization and communication.

However, figure reveals that the measured times for Cube™(64) are
basically much higher than that for Cube™(8). For example, the times for
MKL amount to about 0.17 seconds for 8 meshes, but to 0.34 seconds for 64
meshes which is just twice as much in spite of the same load per mesh. This
trend is still more pronounced for FFT(10~*) and ScaRC which both need
about 4 times as long in the 64-mesh case compared to their 8-mesh times.
Even worse, the comparably accurate FFT(107%) needs more than 8 times as
long for 64 meshes.

A next observation is that the relation between FFT (tol) and MKL changes
with growing number of meshes to the disadvantage of FFT(tol). Whereas
MKL still needs the double time of FFT(10~4) in the 8-mesh case, it is already
a bit faster in the 64 mesh case. The relation between MKL and FFT(10°)
is even worse: While FFT(10~%) needs about 2.4 times as long as MKL for 8
meshes, it needs about the tenfold time for 64 meshes.

All these relations clarify that the increased communication overhead re-
lated to the bigger number of meshes massively dominates the whole simu-
lation, even for the optimized MKL solver. The losses of global coupling,
which are algorithmically unavoidable in FFT(tol) and ScaRC, contribute to
another deterioration. Obviously, there is always a price which must be payed
for the parallelization, either with respect to losses of accuracy and/or losses
of speedup.

It is therefore all the more important to perform simulations at the highest
possible usage of local processor storage and computing power in order to
relativize these negative impacts and maximally exploit the local processor
potential.

3.7. Test 4: Costs of the MKL-method

So far, the preceding section suggests that the MKL method provides a
good compromise between accuracy and scalability on the one hand and com-
putational efficiency on the other hand. Clearly, the upper test cases only pro-
vide a very simple snapshot. Further tests based on more complex geometries
and higher numbers of meshes are necessary to get a more comprehensive
overview.

However, there is another important property of MKL which can affect
the decision whether it is a suitable Poisson solver for a given constellation or
not. As already mentioned, the MKL method rests upon the computation and
storage of a LU-decomposition which is substantially bigger than the system
matrix A itself.

18

Figure @I) illustrates the growing storage needs of MKL for Cube™ in
case of progressive grid refinements with 243,483,963 and 1923 cells. The
blue bars indicate the number of non-zeros in the global system matrix A and
the red bars the number of non-zeros in the corresponding LU -decomposition,
respectively. Note, that a logarithmic scale is used for the presentation and that
the matrix A has only about 7 times as much entries as the number of grid cells
due to the 7-point discretization.

10°

1011
x 396

101[]_

109}
w
e
N 106 Non-zeros
5 el A
© 107 Il LU
o]
£
=3
=

10%

104

243 483 963 192°
Number of cells

Figure 9: Number of non-zeros in A and LU for Cube™ and different grid
resolutions

For each grid size, the relation between A and LU is listed above each
single LU -bar. If the geometry is decomposed into single meshes, each mesh
holds its part of the global A and LU.

It gets very clear, that the additional memory requirements for MKL are
extremely high. Furthermore, there is no fixed relation between A and LU for
all grid resolutions but the LU requires successively more storage as the grid is
refined. For a resolution of 96° the LU-decomposition is more than 160 times
bigger than A, for 192° even nearly 400 times.

In contrast to that FFT(tol) and ScaRC only need less additional storage:
As FFT(tol) is based on the regular matrix stencils it doesn’t even require the
storage of A. In case of ScaRC the matrix A and only a handful of additional
vectors must be stored.

Furthermore, the initialization phase in MKL takes quite a long time. As
a small example the Cube ™ (8) case with 967 grid cells is noted: Here, the
initialization phase requires about 5000 seconds, i.e. more than 83 minutes,
whereas each single Poisson solution only needs 17 seconds.

19

In view of the already very long simulation times for a typical fire scenario
a longer initialization phase doesn’t seem to be that crucial. But it must be
taken into account that the LU -factorization probably has to be computed more
than once if the geometric situation changes during the simulation, e.g. when
obstructions (dis)appear triggered by some actuation mechanisms.

Usually, a given problem must be best possibly adapted to the available
hardware resources. In order to achieve a high level of accuracy, finer grid
resolutions should be preferred. However, due to its immense additional stor-
age needs MKL doesn’t allow the same degree of grid resolution on a given
platform as FFT(tol) and ScaRC. On the Linux cluster which was used for
all test computations (8 multicore processors with 8 cores of type Intel Xeon
E7340 each), a grid resolution of 2883 cells could still be handled by FFT(tol)
and ScaRC whereas MKL already failed for a resolution of 2403 cells.

All in all, a careful trade-off between the different advantages and disad-
vantages of the different solvers must be made to identify the best Poisson
solver for a given problem.

3.8. Duct_flow-case: Flow through a pipe

As a final example the duct_flow case of the FDS Verification Guide is
presented. It was designed to test the velocity correction of FFT(tol) for a
flow through a duct across different meshes.

The sidewalls of the duct are de-
fined by thin obstructions and the
flow is only restricted to the inte-
rior of the duct. Figure (I0) dis-
plays the geometric situation for a
mesh decomposition into 8 meshes.
Obviously, the flow field is charac-
terized by many direction changes.
Due to the variety of internal ob-
structions and the additional mesh

decomposition this case is a big)
challenge for the FFT(tol) solver. Figure 10: Duct_flow for 8 meshes

For FFT(10~#), MKL and ScaRC the following figure compares the
average Poisson times and resulting velocity errors along the duct walls for a
grid resolution of 647 in case of the 8-mesh decomposition. Obviously, the full
accuracy 1071¢ is achieved by MKL and ScaRC as can be expected by con-
struction. MKL provides the shortest average time per Poisson solution again,
followed by ScaRC which needs 1.7 times longer. But due to the handling
of the more complex internal structures, the velocity correction in FFT(10~4)
converges rather slowly such that about 1000 iterations are needed to even
reach the relatively coarse tolerance of 10~# along with nearly the tenfold av-
erage Poisson time.

20

FFT(10~%) (41.3 5) MKL (4.4 5), ScaRC (7.5 5)

Brary

Figure 11: Velocity errors and average Poisson times for the duct-flow case

Corresponding tests were also performed for the 64-mesh decomposition
confirming similar relations. Besides several tests were done regarding differ-
ent settings for the usage of OpenMP: For grid resolutions of 64° and 1283
cells, either 1, 2 or 4 OpenMP-threads were used. But the results were some-
what sobering. At least on the used Linux cluster platform the usage of 4
OpenMP-threads only led to an improvement of 5% in the maximum com-
pared to the use of 1 OpenMP-thread which doesn’t seem to be worth the
fourfold increase of cores. More related tests are planned on other platforms.

3.9. Summary

The upper tests suggest that the choice of a suitable Poisson solver for a
given constellation depends on a variety of different criteria and and must be
oriented towards a clever balance between:

* a sufficient accuracy (How big is the resulting error along internal obstruc-
tions and mesh interfaces?)

* a good performance (How much computational time is needed for a single
Poisson solution?)

* the algorithmical costs (How many additional storage is needed? Is it nec-
essary to install extra libraries?)

If the present Poisson solvers are viewed in this light, the following conclu-
sions can currently be drawn: Although FFT(tol) is only working for struc-
tured discretizations, it has proven to be incomparably fast and efficient for a
big variety of single-mesh constellations. For multi-mesh problems it depends:
If a sufficient accuracy can be achieved by using only a coarse tolerance (e.g.
in steady state situations and/or for single- or ’less-mesh’-decompositions) the
same holds true in many cases. But the resulting accuracy along (complex)
internal obstructions or mesh interfaces may drop down comprehensively for
more transient situations or massively parallel subdivisions and must be kept
in view carefully.

21

MKL and ScaRC are based on unstructured discretizations which allow
the correct mapping of internal boundary conditions along immersed bodies.
Thus, they are basically able to provide a higher accuracy in complex geomet-
ric situations. Additionally, they both manage without the setting of artificial
boundary conditions along mesh interfaces, but rather act in a more domain-
spanning way which better fits the requirements of the global pressure.

For the cases discussed above, the MKL method has shown the most ef-
ficient and robust behavior with respect to accuracy and computational time
if the number of meshes is increased. The reordering and factorization of the
LU-decomposition requires a substantial effort but has to be done only once at
the best. The forward/backward substitution is much faster, such that the ef-
fort per FDS time step is acceptable. However, the LU-decomposition is much
more dense than the system matrix itself and must be stored additionally which
is extremely memory intensive for small grid resolutions and subdivisions with
many meshes.

ScaRC lies somewhere in-between MKL and FFT(tol) providing a rela-
tively high level of accuracy combined with a moderate computational speed.
It should be noted that there is still additional potential of improvement, as will
be explained in a little more detail in the following outlook section.

For every considered solver it may be difficult to evaluate its behavior
for a new constellation in advance. The scalability of all variants is far from
being optimal: The speedup decreases considerably with increasing number
of processors even if the load per processor is kept constant. Thus, their be-
havior for massively parallel applications with hundreds or even thousands of
meshes cannot be predicted yet. The best scalability behavior can currently be
observed for MKL, but its competitiveness or growing subdivisions will de-
crease comprehensively due to the need of storing the global LU-factorization
for an ever-growing number of meshes and grid cells.

In contrast to that, ScaRC shows better scalability properties than FFT (tol)
and much less memory needs than MKL (while attaining the same level of ac-
curacy). Thus, it could be a good compromise on the way to a higher degree
of parallelism, but this has to be confirmed by further tests for more complex
situations.

3.10. Outlook

All in all, the upper test cases only provide some basic assessments of the
relationship between the considered Poisson solvers but are still insufficient to
give a consistent overall picture yet. In order to widen the view further test
series are planned based on geometries with a higher degree of complexity
using bigger numbers of meshes and more complicated internal obstructions.

With respect to ScaRC additional optimizations regarding its applicability
on unstructured meshes and the related preconditioning and smoothing tech-
niques are to be implemented. Furthermore, the use of optimized libraries for
vector- and matrix-operations as well as the use of OpenMP capabilities will
be included into the code in the near future.

22

It is furthermore intended to use MKL and ScaRC in two additional contexts:

Currently, the development of Immersed Boundary Methods (IBM) which
allow the inclusion of complex, non-Cartesian bodies into the FDS grid, is
the object of continual further improvement. MKL and ScaRC are going to
be tested as solvers for the solution of the implicit scalar advection-diffusion
in a band of cells around the surface of an immersed body, the so-called cut-
cell region. Compared to the whole Poisson problem this is a much smaller
problem such that better performances can be expected.

In order to preserve the advantages of the FFT-method with respect to its
low memory needs and its high local performance it is intended to decom-
pose the Poisson solution on the Cartesian unstructured mesh into a Poisson
solution based on FFT on the structured mesh plus a Laplace solution based
on MKL or ScaRC on the Cartesian unstructured mesh, where the Laplace
solution serves as velocity correction process.

References

[1] A. Sweet, Roland. Crayfishpak: A vectorized fortran package to solve

helmholtz equations.

[2] P. Orlandi E.A. Fadlun, R. Verzicco and J. Mohd-Yusof. Combined

immersed-boundary finite- difference methods for three-dimensional com-
plex flow simulations. Journal of Computational Physics, 161, 2000.

[3] Kevin B. McGrattan, Simo Hostikka, Randall McDermott, Jason Floyd,

Craig Weinschenk, and Kristopher Overholt. Fire Dynamics Simulator
(Version 6) Technical Reference Guide, Volume 1: Mathematical Model.
National Institute of Standards and Technology, 6.5.2 edition, August
2016.

[4] Jack J. Dongarra, Lain S. Duff, Danny C. Sorensen, and Henk A. Van-

der Vorst. Numerical Linear Algebra for High Performance Computers.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
1998.

[5] Jack Dongarra. Basic linear algebra subprograms technical forum stan-

dard, international journal of high performance. Applications and Super-
computing, (16(1)):1-111, 2002.

[6] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial

and Applied Mathematics, Philadelphia, PA, second edition, 2003.

[7] Jinchao Xu. Iterative methods by space decomposition and subspace cor-

rection. SIAM Review. A Publication of the Society for Industrial and
Applied Mathematics, 34(4):581-613, 1992.

23

	MOTIVATION
	DIFFERENT POISSON SOLVERS
	The Poisson equation for the Pressure
	Discretization of the Poisson equation
	Direct versus Iterative Poisson solvers
	Direct solvers
	Iterative solvers

	Structured versus unstructured discretization

	NUMERICAL TESTS
	Basic Poisson Solvers
	Basic Test Geometries
	Basic Domain Decompositions
	Test 1: FFT(tol) for different tolerances
	Test 2: Average Poisson solution times for constant problem size
	Test 3: Average Poisson solution times for growing problem size
	Test 4: Costs of the MKL-method
	Duct_flow-case: Flow through a pipe
	Summary
	Outlook

	References

