Simulation of **Dremixed flames** with FDS Application to the hot smoke testing system Izar

Blond Hernández,

Juan José

Basler & Hofmann AG

juan.blond@baslerhofmann.ch

Rios, Oriol

Centre for Technological Risk Studies (CERTEC).

Universitat Politècnica de Catalunya Barcelona,

Spain

oriol.rios@upc.edu

Introduction

Don't worry, this section is not long...

- This work is based on the hot smoke testing system, Izar
- It was developed by the swiss company Basler & Hofmann AG
- A premixed combustion is the source of energy for the test
- The results presented in this work are part of its development process
 - The entire work was presented as master thesis within the IMFSE program in 2013

Before we begin, what is Izar?

I am very happy with your question...

Izar is a system with... a gas burner

... a gas supply system...

2-2

... and some fog generators

Our clients wanted to see the smoke,... and my boss too

It sounds interesting, but what makes Izar something special?

Well Izar is definitely a cool machine...

- It doesn't generate soot
 - Nobody likes to clean...
- Live control of the HRR
 - It is possible to follow fire curves like the t²-curve
- A validated FDS model is available

How is that you decided to combine FDS with Izar?

- We do the test in rooms in use or just before commissioning
- The room limiting factor must be considered (sprinklers, lights, protected ceilings)

issioning klers, lights,

Calculate the plume temperatures originated by Izar

- The temperature is one of the main factors to design the smoke tests
- Realistic test = high temperatures
- Necessary temperature data from Izar for different powers and room heights

How to calculate temperatures from premixed flames?

- The combustion efficiency is the most important factor for premixed flames
- What happens afterward? -> Not enough studied

A new framework is developed with FDS to calculate the plume temperature

And how did you create the FDS model for Izar?

- The combustion itself is "not important", we want to model the plume
 - The combustion will not be modeled
- We model the combustion products which conform the plume, the "smoke"
- Three initial factors

The initial species (1/2)

- The combustion takes place under stoichiometric conditions
- Well known which the combustion products are $C_3H_8 + 5O_2 + 5 \cdot 3.76N_2 = 3CO_2 + 4H_2O + 5 \cdot 3.76N_2$

We define the mass ratio fuel/p

Specie	Molecular weight	Amount of products	
	(g)	(g)	
C ₃ H ₄	40	-	
CO ₂	44	132	
H ₂ O	18	72	
N ₂	28	526.40	

product				
Mass ratio				
_				
3.3				
1.8				
13.16				

The initial species (2/2)

- We calculate the necessary mass flow rate for a desired HRR with the fuel heat of combustion
- Example for 500 kW
 - Propane heat of combustion: 46 kJ/g
 - Mass flow to achieve 500 kW500 kW / 46 kJ/g = 10.85 g/s

Specie	Amount of fuel	Mass ratio	Amount of
	(g/s)		(g/s
C ₃ H ₄	10.85	-	-
CO ₂	_	3.3	35.8
H ₂ O	-	1.8	19.5
N2	_	13.16	142.7

Proper initial values for the subsequent system mass balance

products 5) 80 53 78

The initial temperature

- The initial temperature of the gas is related with the flame temperature
- The combustion takes places under stoichiometric conditions
- The adiabatic combustion temperature characterizes the flame temperature
- For our case: Flame temperature = 1.995 °C (Propane adiabatic temperature)

Grid mesh and geometry

- The mesh definition is a critical value in a FDS model
- The combustion product must be introduced in kg/m² s
- The combustion surface defines the initial moment in the system
- Our system has a geometry of 122 cm (length) x 17 cm (width)
- A 6.5 cm cell size was chosen after a sensitivity analysis

el ′m²·s : in the

7 cm (width) Iysis

Radiation

- High combustion efficiency -> low radiation loses
- The radiation fraction can be calculated considering the partial pressures
- The radiation loses of the system are around 3%

Well you can find the equation in my paper...

Validation of the FDS model

- You are probably thinking
 - Nice method
 - The theory is interesting, but I want to known if it works
 - Does he have more cool pictures?
- Well, let's show the result
 - And yes there are some cool photos

Slice Data

Let's begin with the plume in FDS

- Using the described initial inputs, Izar was modeled in FDS
- A grid was programmed to measure the temperature
 - Temperature sensor every 20 cm in the X and Y axis
 - Repeated each 19.5 cm in the Z-Axis
- This way of simulating the system avoid possible uncertainties related with the combustion

Input values in FDS...

- The gas burner is rectangle 130 cm (200 cells) x 19.5 cm (3 cells)
- The amount of combustion products is in kg/m 2 s
- The boundaries are open -> "free plume"

... and it looks like that

The next step is to validate the results

And that means?

- Switch on Izar
- Do some real fire
- Measure the temperatures in the plume

And it turns out that the results match at 1.200 kW....

... but also with Izar working at 400 kW...

-Full scale Test -FDS Simulation

Full scale Test

-Full scale Test -FDS Simulation

... or just working at 100 kW

Full scale Test FDS Simulation

Full scale Test -FDS Simulation

-Full scale Test FDS Simulation

Next step, a full scale test

- The plume model works
- Therefore, it should be possible to model a real scale
- Is it really possible to simulate that?

Full scale test

The full scale test

- We measured the temperatures within the smoke layer
- We carried out tests at different powers

We modeled the full scale test with our FDS model...

... and these are the results

I know that you cannot see too much here...

here three examples

they look definitely similar

(a)

(b)

Conclusions

- The methodology efficient tool to model the system Izar
- The main inputs are:
 - Combustion products
 - Flame temperature
 - Combustion region geometry
- FDS resolves properly the turbulence and entrainment around the plume
 - The centerline plume temperatures confirm this point

Future work

- Different configurations
 - Different fuels
 - Different geometries
- Validate the model in tunnels
- Development of plume equations
- Test and validate new premixed burning submodel

The future of the FDS Simulations?

- The model can be used to validate FDS geometries "a priori"
 - We can carry out a test with Izar
 - We take the necessary measures
 - We use the validated FDS model from Izar to calibrate the simulation
 - We program the design fire
- This way we reduce the uncertainties related with the geometry
- Reduce the safety factors
- Optimize the smoke extraction system

Thanks for your attention

