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e Multi-scale modelling based on Colella et a/[ 1]

¢ Previous work based on commercial CFD package and
Reynolds Averaged Navier Stokes

e Multi-scale modelling using FDSé6:

Not attempted before

Enabled by the FDS HVAC feature

Proof of concept by Vermesi et a/|2]
Constant flow specified at boundary

No coupling of jet fans to the fire behaviour



¢ |ncreasingly denser and taller buildings

m Scarcity of land resources
m High rise buildings
m Options for above ground rail or utility network limited

e Tunnelis often the more practical solution
¢ Tunnels can be used for rail, roads or utilities



¢ Ventilation is needed to most tunnels

m Life safety (fumes or CO from fire)
m Regulating temperature (train operation)

e Three main types of ventilation system

m Longitudinal (jet fans)
m Transverse (ducted supply and extract)
m Semi-transverse (hybrid of ducted and non-ducted)



Figure 1. ECRL Rail Tunnel, Australia



¢ Design of tunnel ventilation system
e 1D /Subway Environment Simulation (SES)

m Early stages of design

m Fast computation

® Provides global averaged prediction

® | imitations on gas species or high resolution calculations



e 3D /Full CFD simulation

m Tovalidate the design carried out at the earlier stages

® Timeconsuming

® Provides high resolution predictions, e.g. gas species and
combustion

® Tunnel section models often shorten to reduce
computational time

¢ |sthere abest of both world?



e Multi-scale modelling method

e Using 1D for far field tunnel sections

e Full CFD for near field, or tunnel section of interest

¢ Significantly reduce the computational time

e Off-set computational time for longer tunnel section




Multi-scale modelling method

Direct and indirect coupling methods
FDSé6.1 is based on indirect coupling method
Implemented using HVAC feature

m Acknowledge this is not the intended use of HVAC




e Model is based on Dartford Tunnel West
e Coldflow field measurement data available[1]
e Dartford Tunnel West properties:

m 1.5kmlong
m 14 jetfans pairs (JFP) with 8.3 mS/s per fan
e Key of multi-scale model

m |nterface between 1D and full CFD sections
® Flow need to be fully developed
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Figure 2. Representation of multi-scale model



Ly is length of portal = 50 m
LJFup and LJEDW are length up and downstream of jet fans =

35 mand 130 m respectively
LAre is length each side of fire=170m

Calibrated from running multiple models




¢ Coldflow modelling results presented separately in Tunnelling
and Underground Space Technology [ 3]

¢ Good correlation from 80 m downwind of the jet fans

e Poorer correlation nearer to jet fans:

m | ack of detailed information of installed jet fans
m Difficulty to accurately model the jet fans
®m No accurate measurement of tunnel walls' surface roughness
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Figure 3. Average velocities measured in the tunnel [ 3]
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Figure 4. Multi-scale model velocity profile downwind of jet fans
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Figure 5. Multi-scale model velocity profile downwind of jet fans

[3]
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e Adapted from the same cold flow multi-scale model

¢ |ntroduction of a fire in the middle of the tunnel

¢ Three firesizes considered, 35 MW, 55 MW and /5 MW
e Validation study conducted (Arup Tunnel case)

e Mass flow rate is the measured variable

¢ |nteresting behaviour observed in the multi-scale model




e Oscillatory mass flow observed

e Mass flow rates in multi-scale models do not stabilise compared
to the full CFD model

e [tisyettobedetermined if the oscillationis numerical

e Similar oscillation for velocity and temperature observed by
Vermesi et a/[2]
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Figure 7. Mass flow rates (35 MW) in the tunnel. Left: Mass flow
In and out. Right: Mass flow along the tunnel.
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Figure 8. Mass flow rates (55 MW) in the tunnel. Left: Mass flow
In and out. Right: Mass flow along the tunnel.
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Figure 9. Mass flow rates (75 MW) in the tunnel. Left: Mass flow
In and out. Right: Mass flow along the tunnel.
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Figure 10. Oscillating temperature and velocity in a tunnel fire
[3]



e Multi-scale modelling using FDSé6.1 + HVAC is feasible
e Canbeused for cold flow multi-scale modelling
¢ Fire modelling using the multi-scale model:

m Oscillating mass flow

m Mass flow rates do not stabilise compared to the full CFD
model

® Should not be used until the above two questions can be
answered
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