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ABSTRACT 

Computer simulations based on models of pedestrian dynamics have become useful tools for 
evaluating emergency egress scenarios.  ‘Microscopic’ models track individual pedestrian 
movements, which are then used to describe macroscopic pedestrian flow.  Simulations enable the 
comparison of pedestrian facilities designs, evaluation of escape routes in various scenarios, and the 
study of more theoretical questions.  Space-continuous, force-based models simulate interactions 
between pedestrians based on their separation distance and relative velocities.  In a common 
approach, pedestrian’s ‘sensory zones’ are modelled as ellipses, with ellipse parameters varying 
dynamically according to the pedestrian’s direction and velocity.  Interactions between individual 
pedestrians, and between pedestrians and the environment, are controlled in part by overlapping of 
sensory zones; path deviations result from superposition of repulsive and driving forces.  
Implementation of an ellipse-based model requires efficient calculation of ellipse overlap areas.  
Historically, overlap areas have been estimated by approximating ellipse boundaries with polygons 
or other proxy curves.  More recently, an approach for direct calculation of ellipse overlap area has 
been described, using an algorithm for determining the area of an ellipse segment.  The segment 
algorithm is then used to calculate the overlap area between two general ellipses, using points of 
intersection between the two ellipses to identify appropriate segment areas.  Intersection points can 
be found by solving the two implicit ellipse equations simultaneously.  Recent innovations to the core 
algorithm include effective relative position determination, increasing both efficiency and robustness 
of the overlap area algorithm.  This paper describes the direct overlap area algorithm.  
Implementations in C++ are compared for speed and accuracy with proxy curve approaches.  Benefits 
of the direct algorithm are demonstrated within the context of a force-based model of pedestrian 
dynamics. 

INTRODUCTION 

Force-Based Models of Pedestrian Dynamics 
Microscopic models of pedestrian dynamics specify the properties of individuals, and define 

their interactions.  The definitions are then used to simulate movement of individual pedestrians 
within a crowd under specified environmental circumstances.  The modeled crowd system is then 
analyzed using characteristics of the simulated pedestrian streams e.g., density vs. velocity.  The 
realism of the model can be judged by comparing simulated crowd characteristics to observed crowd 
behavior, whenever the model and observations occur in similar environments. 

Force-based models represent an important class of microscopic models for pedestrian 
dynamics.  Observations indicate that pedestrians will deviate from a straight path when they are 
influenced by the presence of other pedestrians.  A path deviation represents an acceleration of a 
pedestrian’s motion, which according to Newton’s laws implies the existence of an external force.  
Force-based models take Newton’s second law of dynamics as a guiding principle and profit from a 
rich theory of dynamical systems and well-known numerical methods. 



A Generalized Force-Based Model 
The Generalized Centrifugal Force Model (GCFM) (Chraibi et al., 2010) describes the time 

evolution of individual pedestrians within a crowd by implementing a system of superposing short-
range forces.  Inter-pedestrian forces are governed by the spatial relationship between the “sensory-
zone boundaries” of neighboring pedestrians as well as their relative velocities.  Templer (1992) 
described the “sensory zone” as an elliptical space surrounding a pedestrian that is maintained, for 
psycho-cultural reasons, to avoid physical conflicts with other pedestrians and objects in the 
environment. 

The GCFM uses ellipses to represent the two dimensional sensory-zone boundaries of 
individual pedestrians; ellipse axes are oriented in the instantaneous direction of travel, and semi-
axes lengths are adjusted according to instantaneous velocity.  Inter-pedestrian forces are derived 
from the distance between neighboring ellipses, dij in the left panel of Fig. 1.  In some circumstances, 
such as high-density regions, sensory-zone ellipses may overlap, and in such cases the inter-
pedestrian force is determined from the ellipse overlap area, illustrated in the right panel of Fig. 1.  
This paper describes an efficient method for calculating the overlap area of two general ellipses, 
which can be used to boost the computational efficiency of simulations using force-based pedestrian 
dynamics models. 
 

              
Figure 1: In the GCFM, short-range forces between pedestrians are derived from the separation 

distance or the overlap area of sensory zones, which are represented by ellipses. 
 

NUMERIC APPROXIMATION OF ELLIPSE OVERLAP AREAS 

Polygon Approximation 
The area of an ellipse can be approximated by the finding the area of an inscribed polygon, 

calculated by summing the areas of adjacent triangles that comprise the polygon (Fig. 2, left panel). 

 
Figure 2: Left: The area of an ellipse is approximated by an inscribed polygon.  Right: The 

overlap area of two ellipses can be approximated by the shared area of two inscribed 
polygons. 

 



The polygon area asymptotically approaches the ellipse area as the number of vertices increases.  The 
polygon area calculation requires evaluation of the ellipse equation at each vertex, so higher area 
precision becomes more computationally expensive.  The polygon approach can be exploited to 
determine the overlap area of two intersecting ellipses.  Intersection points of polygon edges are 
determined (e.g., O’Rourke et al., 1982; Toussaint, 1985), and provide demarcation points for finding 
the appropriate area representing the overlap. 

Gauss-Green Area 
An alternative method for determining ellipse overlap area is based on a direct calculation 

from the ellipse properties.  Consider a general ellipse that may be rotated and translated, with semi-
axis length A along the x-axis, and semi-axis length B along the y-axis.  Then the ellipse is defined by 
a locus of points that satisfy the parametric expression in Eq. (1): 

 
𝑥(𝑡) = 𝐴 ∙ 𝑐𝑜𝑠(𝜑) ∙ 𝑐𝑜𝑠(𝑡) − 𝐵 ∙ 𝑠𝑖𝑛(𝜑) ∙ 𝑠𝑖𝑛(𝑡) + ℎ

𝑦(𝑡) = 𝐴 ∙ 𝑠𝑖𝑛(𝜑) ∙ 𝑐𝑜𝑠(𝑡) + 𝐵 ∙ 𝑐𝑜𝑠(𝜑) ∙ 𝑠𝑖𝑛(𝑡) + 𝑘
ൠ    0 ≤ 𝑡 ≤ 2𝜋 (1) 

A rotated-then-translated ellipse can be defined by the set of parameters {A, B, h, k, φ}, with the 
understanding that the rotation through φ is performed before the translation through (h, k).  The 
same general ellipse is written as an implicit polynomial by Eq. (2): 

 𝐴𝐴 ∙ 𝑥ଶ + 𝐵𝐵 ∙ 𝑥 ∙ 𝑦 + 𝐶𝐶 ∙ 𝑦ଶ + 𝐷𝐷 ∙ 𝑥 + 𝐸𝐸 ∙ 𝑦 + 𝐹𝐹 = 0 (2) 

The relationship between parametric constants {A, B, h, k, φ} and the equivalent polynomial 
coefficients {AA, BB, CC, DD, EE, FF} is given in Hughes and Chraibi (2014).  The area of an ellipse 
sector between two points is swept out by a vector from the center to the first point (x1, y1) as the 
vector tip travels along the ellipse in a counter-clockwise direction to the second point (x2, y2), 
calculated using the Gauss-Green formula as in Eq. (3): 
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The method of Eq. (3) for determining the area of an ellipse sector is illustrated in Fig. 3 (left panel).  
The overlap area between two ellipses is found by determining the sector areas in each ellipse 
between the intersection points, and adding or subtracting appropriate triangle areas, illustrated in 
Fig. 3 (right panel).  The overlap area is the sum of the two shaded areas.  Each shaded area can be 
determined from an ellipse sector, minus the triangular regions formed by the intersection points 
and the ellipse centers. 
 

      
Figure 3: Left: The area of an ellipse sector between two points on the ellipse.  Right: The 

overlap area between two ellipses from sector areas, and the addition or subtraction 
of appropriate triangular areas. 

 
 
In order to implement Eq. (3), the intersection points between two overlapping ellipses must be 
found.  In general, intersection points are found by solving the two implicit polynomials 
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simultaneously; in the most general case, the solution is found by determining the roots of a quartic 
polynomial. 

Precision of the overlap area depends on the precision of the location of intersection points.  
Furthermore, the efficiency of the overlap area algorithm is affected by efficiency of the root-finding 
algorithm.  Implementation of the analytical solution on an Intel Core i7-2620M, 2.7 GHz, 4 MB Cache, 
is 40 to 140 times faster than the solution based a polygon-approximation of ellipses with n = 8 and 
n = 20 vertices, respectively.  For the cases tested, the overlap areas were known precisely; the 
relative error of areas determined by polygon approximation ranged from 0.1 to 0.01, respectively, 
while the direct method areas had a relative error of <1e-6.  Additional details of the direct overlap 
area determination using the Gauss-Green method are presented in Hughes and Chraibi (2014). 

Numeric Implementation for Pedestrian Dynamic Modeling 
Simulations that implement force-based dynamics models based on elliptical sensory zones 

must address ellipse overlap areas for every pair of adjacent pedestrians in every frame.  Efficiency 
of the area overlap algorithm thus becomes an important consideration for computation, particularly 
for extended simulations with many pedestrians.  Regardless of the method used to determine ellipse 
overlap area, algorithm efficiency is improved by first determining the relative position of the two 
ellipses.  Twelve distinct cases of the relative position between two ellipses are identified (Alberich-
Carramiñana et al., 2017; Etayo et al., 2006), illustrated in Fig. 4. 
 

 
Figure 4: Twelve distinct cases of the relative position of two ellipses.  Case 0 (not shown) 

represents coincident ellipses.  Only five of the 12 cases require calculation of non-
trivial areas. 

 
 
Alberich-Carramiñana et al. (2017) describe an algorithm for determining the relative position of two 
general ellipses.  A binary decision tree is formulated, whereby the decision at each node is based on 
the sign of algebraic expressions calculated from the two sets of implicit polynomial coefficients; the 
most complex expressions are third and second order polynomial discriminants.  Determining 
overlap area of two ellipses is vastly more efficient when the relative position is determined prior to 
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Points

10, 11: Osculating and 
Hyperosculating



implementing the search for intersection points.  For example, if the two ellipses are externally 
tangent, the overlap area is zero, and there is no need to check for intersection points at all. 
 

VALIDATION OF THE DIRECT OVERLAP AREA METHOD 

Force-based pedestrian dynamics models that use polygon-based area algorithms may seek 
improved numerical efficiency by utilizing the direct ellipse area overlap method.  The relative error 
of estimates produced by the two area algorithms differ; simulations using each of the two area 
methods with the same initial and boundary conditions will not produce the same pedestrian tracks.  
It is prudent to ask whether the choice of area method produces discernible differences in salient 
aspects of the modeled system. 

Comparing system attributes for simulations using different area algorithms is akin to 
validating a model by comparing to observational data.  One such validation tool is the Fundamental 
Diagram, a plot of density at various average velocities.  A realistic model will display a density-
velocity profile similar to experimental data collected in circumstances similar to the model 
environment. 

Checking specifically for the effects of area algorithm choice on system dynamics, a similar 
metric is proposed based on a measure of spatial randomness of the point pattern.  The Clark-Evans 
(CE) test statistic (e.g., Cressie, 1993) is a measure of complete spatial randomness.  A list of discrete 
points in a continuous 2D domain, {(x1, y1), (x2, y2), …, (xn, yn)} has a point density λ within the domain 
equal to n/area.  Each point has a nearest neighbor at a specific distance, {d1, d2, …, dn}.  To calculate 
the CE test statistic, select a random sample of m ≈ 0.1 n values from the set of nearest-neighbor 
distances.  Then, the statistic of Eq. (4) follows a standard normal distribution: 
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Figure 5: Spatial point patterns, and corresponding Clark-Evans test statistic ranges.   
 
 
Point patterns which display attributes of complete spatial randomness will have CE test statistics 
near zero, with a standard deviation of 1.  One benefit if the CE test statistic is that the value can be 
used to characterize how a pattern might deviate from complete spatial randomness.  Patterns that 
are significantly more clustered than random have highly negative CE values, whereas patterns that 
are significantly more ordered than random have highly positive CE values. 

The CE test statistic can be used to compare force-based simulations with experimental data 
and for comparing simulations that use different area overlap algorithms.  Fig. 6 illustrates use of CE 
test statistic for characterization of spatial randomness through a sequence of measured frames for 
a bi-directional corridor scenario from the BaSiGo experiment. 



 
Figure 6: CE test statistic through a sequence of measured frames for a bi-directional corridor 

scenario from the BaSiGo experiment.  Project Description: http://www.basigo.de/  
Data at:  http://ped.fz-juelich.de/db/ 

 

CONCLUSIONS 

Force-based pedestrian dynamics models that utilize elliptical sensory zones must calculate 
the overlap area of adjacent ellipses.  A commonly-used algorithm for determining overlap area uses 
inscribed polygons to approximate ellipse boundaries, and the ellipse overlap area is estimated by 
the shared area of the approximating polygons.  A direct method for ellipse overlap area exploits the 
Gauss-Green formula, given any points of intersection between the two ellipses.  The direct method 
is numerically more efficient with less relative error than the polygon approach.  Either area method 
will benefit from a pre-characterization of relative position using an efficient decision tree algorithm.  
Validation of any changes in the choice of overlap area algorithm is aided by system-level 
characterization, such as comparison of density-velocity and spatial randomness-density profiles. 
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