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Next Generat ion Fire Engineering

FDS pressure Poisson equation

Different discretization types
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Pressure equation in FDS

Elliptic partial differential equation of ,Poisson™ type

J(V-u)

2q( _
VH = >

V.F + boundary conditions

Key feature: Local information is spread immediately over whole domain!

Pressure
equation
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Discretization with finite differences

5-point stencil in 2D 7-point stencil in 3D Pressure
equation
1
: 1 .

Specifies physical relations between grid cells according to elliptic equation

Next Generation Fire Engineering h h p b e rll n ,



Demo-case ,2D-pipe with obstruction’

Simple example to explain the concepts

W

Pressure
equation
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Global versus local discretization

Global discretization Pressure
equation

1 global matrix, 1 global right hand side vector
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Global versus local discretization

Global discretization Set of local discretizations Pressure
equation

1 global matrix, 1 global right hand side vector M local matrices, M local right hand side vectors
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Global versus local discretization

Global discretization Set of local discretizations Pressure
equation

1 global matrix, 1 global right hand side vector M local matrices, M local right hand side vectors
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Structured versus unstructured discretization

There are different possibilities to discretize ...

Pressure
equation




Structured versus unstructured discretization

.. at cells inside and around a solid obstruction

Pressure
equation
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Structured versus unstructured discretizations

Structured

Pressure
Regular matrix stencils equation

|
]
1 |2

Cells inside obstructions are included
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Structured versus unstructured discretizations

Structured

Regular matrix stencils

" K2

|
!
1 [2

Cells inside obstructions are included
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Unstructured

Irreqular matrix stencils

" h2

Cells inside obstructions are excluded

Pressure
equation
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Reqular versus Irregular Poisson matrix

Structured Unstructured
Pressure
Highly reqular Poisson matrix A Irreqular Poisson matrix A equation
Highly optimized solvers usable (fast!) Need of more robust solvers (slowerl!)
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Reqular versus Irregular Poisson matrix

Structured Unstructured Dreccyure
Highly reqular Poisson matrix A rreqular Poisson matrix A equation
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Highly optimized solvers usable (fast!) Need of more robust solvers (slowerl!)
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Current FDS pressure solver

Mesh-wise FFT with pressure iteration
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Mesh-wise FFT-solver

Local structured discretizations to solve the local Poisson problems by FFT's FFT
solver

Use of optimized CRAYFISHPAK,
extremely fast and robust
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Mesh-wise FFT-solver

Mathematical solvability requires internal boundary conditions for local FFTs ... FFET
solver

Exact values not known,
only approximately
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Mesh-wise FFT-solver

.. average of neighboring cells from previous time step is used FFT
solver

Local communication required
per FDS time step

<49 local communication
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Accuracy along mesh interfaces?

Question: How accurate is the velocity field at mesh interfaces?

Next Generation Fire Engineering

el I B

______________________________

............................................................

~ [Mesh4-
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No global discretization,
only collection of local ones

FFT
solver
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Accuracy along mesh interfaces?

Local velocity components may be different along mesh interfaces FFT
solver

Mesh 3

Next Genera tion Fire Engineering h h p b e rl i n ’



Accuracy along internal obstructions?

Question: How accurate is the velocity field along inner obstructions? FFT
solver
Meshi3 -~ - - - - - - " " TMesh4
_______ / ]

Structured grids only,
internal boundary conditions
cannot be specified
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Accuracy along internal obstructions?

Velocity components may penetrate into the inner obstructions FFT

solver
/‘

I

Mesh 1
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Mesh-wise FFT-solver

Possible errors along mesh interfaces

Possible errors along obstructions

Next Generat ion Fire Engineering

FFT
solver
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Mesh-wise FFT-solver with pressure iteration

Remedy: Pressure lteration FFlT
PTTTTTTTTTTTITImmmn mnnnmn g soLwver

Use additional
corrective iteration

Repeat local FFT’s
until errors are
corrected

< VELOCITY TOLERANCE ?
< MAX PRESSURE ITERATIONS ? .

<49 local communication
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Mesh-wise FFT-solver with pressure iteration

Start iteration: Initial velocity errors FFT
solver
/ Mesh'3 Mesh 4
Yy
Mesh 1
k\

Mesh 3

Mesh- 1 Mesh 2
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Mesh-wise FFT-solver with pressure iteration

Intermediate iteration: Velocity errors are reduced more and more FFT
solver
la Mesh 3 Mesh 4
/
i
Mesh 1

Mesh 3

Mesh- 1 Mesh 2
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Mesh-wise FFT-solver with pressure iteration

End of iteration: Velocity errors are below specified tolerance FFT
solver

Mesh '3 Mesh 4

Mesh 1
Mesh 3

Mesh- 1 Mesh 2
Mesh 2
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Mesh-wise FFT-solver with pressure iteration

Accurate along mesh interfaces

Accurate along obstructions

FFT
solver
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Mesh-wise FFT-solver with pressure iteration

Converdence speed? Pressure Iteration FET
T i solver

Usually very fast
convergence

< VELOCITY TOLERANCE ?
< MAX PRESSURE ITERATIONS ? .

<49 local communication
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Mapping of the global flow of information?

Question: How quickly does new local information spread? FFT
solver

new =—p

oy — No global discretization,

only local solutions
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Mapping of the global flow of information?

1. Cycle: Information reaches Mesh 1

No global data transfer,
only local commmunication

FFT
solver
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Mapping of the global flow of information?

2. Cycle: Information reaches Mesh 2

Information can only be
transferred mesh-by-mesh ...

FFT
solver
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Mapping of the global flow of information?

3. Cycle: Information reaches Mesh 3

.. successively using
next-neighbor communications

<49 local communication
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FFT
solver
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Mapping of the global flow of information?

4. Cycle: Information finally reaches Mesh 4 FET
solver

Time delay compared to 1-mesh,
especially for large mesh counts

<49 local communication
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Mesh-wise FFT-solver with pressure iteration

Possible troubles Pressure Iteration FET
I i solver

For large mesh counts or
very transient cases
slow converdgence and
large overhead

< VELOCITY TOLERANCE ?
< MAX PRESSURE ITERATIONS ? .

<49 local communication
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UGLMAT solver

Optimized parallel LU-decomposition




Alternative pressure solver UGLMAT

e Global unstructured discretization of whole domain

« Decomposition of global Poisson matrix A in lower and upper triangular

matrices L. and U

A

Para

LU-decormr

» Usade of optimized LU - solver from Intel Math Kernel Library (MKL)

Next Genera tion Fire Engineering

Lel

position

UGLMAT
solver
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Alternative pressure solver UGLMAT

Accurate along mesh interfaces

Accurate along obstructions

UGLMAT
solver
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UGLMAT - Memory needs for 3D-cube

X 238

163

323 643
Number of grid cells

%
-
Q
=
00)
l

1283

~1.,9 Billions

L has much more

non-zero entries than
A due to fill-in’

luge memory
requirements as
qgrid is refined

UGLMAT
solver
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ScaRC

Scalable Recursive Clustering

PR hhpberlin @



ScaRC Core: Overall global iterative method

Global basic iteration

Next Genera tion Fire Engineering

Global structured
discretization

Data-
iterative

dlobal Poi

narallel

method for
sson matrix

ScaRC
solver
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ScaRC Core: Additional local iterative methods

ScaRC

Global basic iteration solver

- lLocal -~ Local
- basic - Dbasic
iteration | iteration Not used as
stand-alone solvers,
but only as corrections

Clocal | local | to global solution

- basic - basic
‘Iteration’ ‘Iteration’
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5caRC Core: Local and global communication

ScaRC

Global basic iteration solver

- lLocal -~ lLocal

- basic — basic

. - 1 i Local solvers offer
Iteration Iteration _ .
ERNEEEENEPYE fine grid accuracy

Basic information transfer
IS provided globally

- local . . - Local .
- basic - basic
‘Iteration’ ‘Iteration’

<4—» local communication <=9 global communication
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ScaRC Core: Structured basic version

Accurate alond mesh interfaces

Possible errors along obstructions

ScaRC
solver
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Multiple variations of different techniques

Use of different discretization techniques ScaRC
solver

- Pressure iteration for structured case — Fix errors at obstructions

- Global unstructured discretization = No errors at obstructions

Use of different global solvers

- Conjugated Gradient method (CG) —» Exploit basic robustness

- Geometric Multigrid method (MG) —» Improve global coupling

Use of different local solvers

- Optimized FFT (CRAYFISHPAK) —» Speed up local solutions in structured case

- Optimized LU (Intel MKL) =—» Speed up local solutions in unstructured case
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ScaRC-CG: Default for structured grids

Pressure lteration

i E ScaRC
Global data-parallel Conjugate Gradient method solver

Fix errors at
inner obstructions

Optimize globally (CG)
Optimize locally (FFT)
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ScaRC-CG: Default for structured grids

Accurate alond mesh interfaces

Accurate along obstructions

ScaRC
solver
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ScaRC-MG: Alternative for structured drids

Pressure lteration

i E ScaRC
5 solver

Fix errors at
inner obstructions

Improve global
coupling (MG)
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UScaRC-CG: Default for unstructured grids

ScaRC

Global data-parallel Conjugate Gradient method solver

No need for
pressure iteration

Optimize globally (CG)
Optimize locally (LU)

<4—» local communication <=9 global communication
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UScaRC-CG: Default for unstructured grids

Accurate alond mesh interfaces

Accurate along obstructions

ScaRC
solver
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Outlook

Still to do/to improve ScaRC

o Use different refinement levels between meshes (currently same is needed) solver
o test further global methods (i.e. algebraic multigrid) and local methods (ILU)
« optimise runtime of single components and incorporate OpenMP-directives

e optimise parameter settings for global and local iterations

Verification & Validation
« run all pressure related verification tests

o start with validation tests
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Pressure trace for 2D-pipe

"
=30 .. Pressure
device
ScaRC
FFT default and tight (tol=10->m/s) Number of required pressure iterations solver
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Pressure trace for 2D-pipe

.
=30 .. Pressure
device
ScaRC
Different variants of ScaRC and UGLMAT Number of required pressure iterations solver
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Verification case: Karman vortex street

dancindg_eddies

4 Meshes

0,5 m/s

Obstructlon plate Pressure Device

10 Meshes

ScaRC
solver




«| Pressure trace 10-mesh case

CIE o ot

Pressure Device

FFT default and tight (tol=10->m/s) ScaRC default and tight (tol=10-5m/s) ScaRC
solver
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Accurate only for tight tolerance, Accurate already for default tolerance,
but increased number of pressure iterations (@ 28) max 4 pressure iterations for tight tolerance
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Verification Case: Flow through a channel

duct_flow

ScaRC
............ solver
- Many internal obstructions
. which cause frequent
................. changes of flow direction
inflow with
8 Meshes VOLUME_FLOW = 1
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VVelocity error along channel

Structured Unstructured ScaRC
solver

FFT and ScaRC (tol=10-3 m/s) incry UGLMAT, UScaRC Doty

mfs m/s

0.00
"» i 0.00 I
/l 0.00
et ! -

» ‘ N

: 0.00

0.00

0.00

0.00

Time: 43.8 |
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Verification cases: Periodic boundaries

NS_Analytical_Solution shunn3

u - component velocity mixture fraction Z

ScaRC
16 meshes

Preserves
periodic
behavior

ScaRC
solver
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summary

Discretization Solver Pressure iteration
FFT Internal obstructions & Mesh interfaces
Structured
ScaRC Internal obstructions
UScaRC :
Unstructured
UGLMAT :
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ScaRC
solver
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DI e® e fd *le] Pressure iterations
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