
PROCEEDINGS, Fire and Evacuation Modeling Technical Conference (FEMTC) 2018
Gaithersburg, Maryland, October 1-3, 2018

SIMULATING REAL-TIME FIRE
FOR FIREFIGHTING TRAINING

Dipl.-Inf. Christian Niemand, Prof. Dr.-Ing. M.Eng. Dieter Wloka

University of Kassel
Wilhelmshöher Allee 71-73

34121 Kassel, Hessen, Germany
e-mail: c.niemand@uni-kassel.de

ABSTRACT

In this paper we start with a short introduction why a real-time fire simulation is needed by
showing a few use cases and the respective requirements. We continue with a short overview of
related work and state of the art techniques.
Then we present our CUDA based parallel approach to simulate heat transfer, pyrolysis, transport
and combustion in real-time followed by showing the results of our algorithms.
We will point out which components are still missing to reproduce the "Couch burning experiment"
performed by Cape Girardeau Fire Department and to simulate a complete room fire in the future.

INTRODUCTION

In Germany firefighters are evaluating how 3D simulations could be used to improve education and
tactical training. In this article we take a look on this area where a realistic fire and smoke behavior
is necessary. Depending on the use cases the visualization and simulation requirements are
different. We’ve created a list of configuration levels, which are mapped to special use cases.
Currently we are working on level 3. The goal of this development is a minimal room fire simulation
which is running in real-time with a minimum of 30 frames per second.

Table 1: Configuration levels of requirements and possible use cases
Level Requirement Use cases
1 Visualization of smoke

Smoke spreading and smoke layer
Fluid dynamics
Voxelization of 3D geometry
Thermal imaging

Search and rescue tactics
Breathing apparatus training
Smoke extraction from buildings
Ventilation

2 Visualization of non-spreading fire Leadership training (group level)
3 Visualization of spreadingfire

Visualization of fire phenomena
Visualization of decomposing objects
Simple fuel based pyrolysis and combustion
Heat transfer
Extinguishing

Extinguishing techniques (cooling down
room and smoke)

4 Reactions with different fuel types
Complex pyrolysis and combustion

Measuring technique (Explosimeter)

5 Realistic parameter settings -

RELATED WORK

We divide the field of fire simulation and visualization into three sections; Simulation applications,
none real-time rendering software and real-time applications. Simulation applications like Fire
Dynamics Simulator (FDS) have an excellent mathematical model [3] to compute the most realistic
data. The calculations are very complex and taking too much time to consider this solution for real-
time purposes. None real-time rendering software like Blender or Maya have a very high visual
quality. They are using a reduced mathematical model but rendering time is still too high. Both
sections are using computational fluid dynamics (CFD) to simulate fire and smoke.
The third and most relevant section for us are real-time applications. Commonly real-time
applications are using simple particle systems to visualize fire and smoke. But this very fast
technique is not suitable to simulate a realistic fire behavior. It is more advisable to use fluid
dynamics to mimic a more realistic behavior of gases.
An advanced demo using real-time fluid dynamics for fire and smoke is shown by NVIDIA
demonstration NvFlow [10]. It is highly optimized to show high quality fire in video games. The
focus is on the visual aspect but not on real fire phenomena which are relevant for firefighter
training. Melek [4] presents an approach including a burning process, chemical combustion, heat
distribution, decomposition and deformation of burning solids.
Some video game simulations like Firefighting Simulator 2018 [9] are also using fluid dynamics to
simulate fire. The foundations of using fluid dynamics in real-time are described in Stable Fluids [5]
and Real-Time Fluid Dynamics for Games [6] by Jos Stam, in Fast Fluid Dynamics Simulation on the
GPU [2] by Mark Harris and in Real-Time Simulation and Rendering of 3D Fluids [1] Keenan Crane,
Ignacio Llamas and Sarah Tariq. An interesting fuel based idea to burn object surfaces is described
in Voxels on Fire [7] by Ye Zhao et al.
An application which combines these techniques and supports a realistic real-time fire which is
acceptable for firefighting training does not exist.

IMPLEMENTATION

To visualize our simulation we are using the game engine Unity 3D from Unity Technologies. Note
that the visualization can be implemented in any other graphics engine as well. The simulation itself
is using Nvidia CUDA and is implemented as a Windows dynamic link library which is used as a
plugin for Unity 3D.

Initialization
The initialization is performed sequentially by the game engine shown in Listing 1. To voxelize the
geometry we are using the mattatz voxelizer from Masatatsu Nakamura [8].

Listing 1: Initialization procedure in pseudocode

Simulation Loop
The simulation loop shown in Listing 2 is called every frame and is executed in parallel on the GPU.
Because the simulation volume is a 3D grid, a 3D texture with the same resolution is an ideal data
storage for data like velocity, temperature and fuel type etc. In our case we are working with a 2563

grid which represents a (5.12m)3 cube in the virtual scenario. For each cell the algorithm is
executed in a separated thread on the GPU. To avoid race conditions ideally the algorithm only reads
from other cells and writes to its own cell.

Listing 2: Simulation loop in pseudocode

Table 2: Used textures
Name Usage
Temperature air Contains the air temperature (all gases).
Temperature solid Contains the temperature in solid cells.
Heat sources Heat sources are overwriting temperature cells every frame.
Oxygen Contains the amount of oxygen in air cells.
Fuel solid Contains the amount of solid fuel in solid cells.
Fuel gas Contains the amount of gaseous fuel in air cells.
Fuel type Defines the behavior of cells.

EMPTY: Cell contains gases and no solid fuel
IGNORE: Cell is solid but ignores conduction and pyrolysis
INCOMBUSTIBLE: Cell is solid but ignores pyrolysis
PAPER: Cell is solid and uses attributes for paper
WOOD: Cell is solid and uses attributes for wood
METAL: Cell is solid and uses attributes for metal
HEAT_SOURCE: Immutable heat source with fixed temperature

Light Contains the light emission produced by combustion.
Smoke Contains the amount of smoke produced by combustion.
Velocity Contains the velocity field which is used for transport.
Divergence Necessary for calculating the next velocity field.
Pressure Necessary for calculating the next velocity field.
Render Texture Used by game engine to render all data.

Transport
The transport algorithm shown in Listing 3 is based on Stam, Harris and Crane and will not be
explained in detail in this paper. Because texture sampling would steal data from solid cells
temperature must be separated into gaseous and solid temperature textures.

Listing 3: Transport algorithm based on Stam, Harris and Crane in pseudocode

Conduction
The algorithm in Listing 4 shows the calculation of conduction and is based on the conductibility of
temperature equation (Eq. 1) which describes the thermal diffusivity in homogeneous and isotropic
materials i.e. material attributes are the same in every voxel and it has no directions in conductivity.

Listing 4: Conduction algorithm in pseudocode

Heat Transfer
In our simulation heat transfer describes the process when temperature is exchanged between cells
at solid and gas borders and vice versa. Currently only the exchange direction from solid to gaseous
cells (shown in Listing 5) is implemented. This heat transfer is responsible to heat up gaseous cells
which results in buoyancy.

Listing 5: Heat transfer algorithm from solid to gas direction in pseudocode

Pyrolysis
Depending on the cell temperature solid fuel is converted into gaseous fuel shown in Listing 6.
Currently only cells with none solid neighbors are producing gaseous fuel. We are planning an
advanced version of this algorithm where inner cells will also produce gaseous fuel, which will be
transported and injected to the nearest non-solid cell.

Listing 6: Pyrolysis algorithm in pseudocode

Combustion
If a cell has an oxygen and gaseous fuel concentration which is within a reactive explosion range
(Def. 1) a combustion happens, if the temperature is above an ignition temperature or the cell is
touched by a flame. Depending on fuel and oxygen concentration the combustion varies in strength.

Listing 7: Combustion algorithm in pseudocode

Buoyancy
Depending on temperature of adjacent cells buoyancy is added to the velocities y (up) component.

Listing 8: Buoyancy algorithm in pseudocode

Table 3: Equations

∂T (x⃗ , t)
∂ t

=a⋅Δ(x⃗ , t) (Eq. 1)

T delta=(T i+1 , j , k−2T i , j , k+T i−1 , j ,k

(δ x)2
+
T i , j+1 ,k−2T i , j , k+T i , j+1, k

(δ y)2
+
T i , j , k+1−2T i , j , k+T i , j , k+1

(δ z)2) (Eq. 2)

T tc
N +1=T tc

N+T delta (Eq. 3)

T lost=(T tc−T nc)k⋅δ t (Eq. 4)

T nc
N+1=T nc

N +T lost (Eq. 5)

T trans=∑ T lost (Eq. 6)

T tc
N+1=T tc

N−T trans (Eq. 7)

Fuelrel=T tc⋅prr⋅δ t (Eq. 8)

Fuelgas
N +1=Fuelgas

N +
Fuelrel
N enc

⋅pcr (Eq. 9)

Fuelreact=c fc⋅Fuel tc⋅δ t (Eq. 10)

Oxygenreact=coc⋅Oxygentc⋅δ t (Eq. 11)

Comb=cc⋅(Fuelreact+Oxygenreact) (Eq. 12)

Light=c light⋅Comb (Eq. 13)

Smoke=csmoke⋅Comb (Eq. 14)

Rad=crad⋅Comb (Eq. 15)

T N+1=T N+ct⋅Comb (Eq. 16)

T amb=
T i−1 , j , k+T i+1 , j , k+T i , j−1 ,k+T i , j+1 ,k+T i , j ,k−1+T i , j , k+1

6
(Eq. 17)

Buo turb=(T tc−T amb)⋅b turb⋅δ t (Eq. 18)

Buolam=T tc⋅blam⋅δ t (Eq. 19)

Buomix=Buoturb⋅(1−α)+Buolam⋅α (Eq. 20)

v y
N +1=v y

N+Buomix (Eq. 21)

ExplRange={(x , y)∈Oxygen×Fuel∣Oxygenmin≤x≤Oxygenmax , Fuelmin≤ y≤Fuelmax } (Def. 1)

Conduction

Heat Transfer

Pyrolysis

Combustion

Buoyancy

RESULTS

This section shows the results of our real-time simulation using the algorithms presented above.

Voxelization
Figure 1 shows a 3D geometry of a wooden couch frame, which is converted into voxels shown in
Figure 2. Every voxel can contain data like temperature and/or material attributes. The voxel data
will be transferred into the according cell of the CUDA 3D textures.

Figure 1: 3D geometry of a couch frame Figure 2: Voxelized couch frame

Conduction
Figure 3 shows the expected spreading of temperature in a test object. In this case a very high
conductivity is used to cause a fast temperature propagation.

 Figure 3: Temperature flow within a test object at time frames t=0.45s, t=1.74s, t=5.58s and t=13.22s

Heat Transfer And Buoyancy
Heat transfer between solid and gaseous cells is one reason how gaseous cells can increase
temperature. Different temperatures in adjacent cells results in buoyancy. Figure 4 shows laminar
buoyancy, Figure 6 turbulent buoyancy and Figure 5 mixed buoyancy.

Figure 4: Laminar α=1 Figure 5: Mixed α=0.5 Figure 6: Turbulent α=0

Pyrolisis And Combustion
Figure 7 shows escaping gaseous fuel from a hot couch frame with enabled heat transfer from solid
to gas and buoyancy. The transferred temperature results in buoyancy which diffuses the gaseous
fuel. Figure 8 shows the same scenario but with disabled heat transfer and buoyancy. This results in
no buoyancy and the gaseous fuel is gathering around the couch frame. Figure 9 shows the
combustion process. The brighter the color the more intense is the combustion. Combustion also
increases gas temperature in a cell and causes buoyancy.

Figure 7: Pyrolysis with heat
transfer and buoyancy

Figure 8: Pyrolysis without heat
transfer and buoyancy

Figure 9: Combustion intensity

Burning Couch Frame
We have built a scenario with one couch frame and one heat source to start reconstructing the
"Couch burning experiment" performed by Cape Girardeau Fire Department. The simulation runs
with 35 frames per second on a single NVIDIA TitanXp and with 32 frames per seconds on a NVIDIA
GeForce 780Ti. The simulation volume is a 2563 grid. At the back right corner of the couch frame the
ignition source is placed. Fire progresses from right to left side and combustion stops when no solid
fuel is left and no gaseous fuel can be produced anymore.

Figure 8: Burning couch frame at time frames t=5s, t=60s, t=210s and t=290s

Stress Test
We also built a stress test to test the possibilities for more complex scenarios. We used a scenario
with 18 stacked couch frames and 4 heat sources (Figure 9 and Figure 10). Figure 11 shows
conduction within the stack of couch frames and Figure 12 shows the speed (no direction) of the
velocity field. The brighter the color, the faster the velocity. The simulation runs with 35 frames per
second on a Nvidia TitanXp (Intel i9 2.9Ghz, 64 GB RAM) and with 32 frames per seconds on a
Nvidia GeForce 780Ti (Intel i7 3.6 Ghz, 16 GB RAM). The simulation volume and the performance at
runtime are the same as they are in the single couch scenario but the voxelization process during
initializing needs 18 times longer (approx. 90 seconds). Referring to benchmark data and videocard
specifications the TitanXp should provide around 50 frames per seconds. The small difference
between the measured frames per second reveals a bottleneck probably in our sequential
implementation or a synchronization issue.

Figure 9: Stress test
configuration

Figure 10: Stress test
stacked burning couch
frames

Figure 11: Stress test
conduction

Figure 12: Stress test
velocity field

Smoke Layer
We successfully created a small scenario with our simulation which builds a smoke layer. Figure 13
shows the growing smoke layer. One can see how smoke gradually fills the room from top to bottom.

Figure 13: Smoke layer at time frames t=10s, t=90s, t=240s and t=330s

FUTURE PLANS

In the near future we will implement heat transfer from gas to solid, radiation, decomposing objects
and the extinguishing process. We already have a radiation model and a working implementation
for decomposing objects but it does not fulfill the real-time requirements yet.
As soon as all components are implemented and running in real-time, we will start with
reproducing fire phenomena like rollover, dancing angels and flashover. We also are planning to
extend the simulation to multiple simulation volumes which are computed on parallel GPUs in one
PC.

CONCLUSION

The current simulation using a 2563 grid runs with 35 frames per second on a NVIDIA TitanXp
(Intel i9 2.9Ghz, 64 GB RAM) and with 32 frames per seconds on a NVIDIA GeForce 780Ti (Intel i7
3.6 GHz, 16 GB RAM).
With a cell/voxel size of 2cm in each dimension a volume of (5.12m)3 can be covered. Depending on
the use case the voxel size could be smaller or bigger to get more visualization detail or to cover a
bigger volume. Pending work like radiation, extinguishing process and decomposing objects will
definitely cost performance. But till now we did not spent much time on optimization. Additionally
one can reduce the simulation volume to a 1283 grid, which reduces computing time by factor eight
to keep the simulation in real-time. To reproduce the couch burning experiment to its full extend
decomposition is necessary, which we are planning for the next version. The stress test already

showed the simulation has no performance issues. It should also be possible to reproduce a small
room fire even with multiple heat sources and furniture.

REFERENCES

[1] Crane K., Llamas I., Tariq S. (2008), “Real-Time Simulation and Rendering of 3D Fluids”, GPU
Gems 3, 633-675

[2] Harris M.J. (2004), “Fast Fluid Dynamics Simulation on the GPU”, GPU Gems, 637-665

[3] McGrattan K.B., Hostikka S., McDermott R., Floyd J., Weinschenk C., and Overholt K. (2017), “Fire
Dynamics Simulator (Version 6) Technical Reference Guide, Volume 1: Mathematical Model”,
National Institute of Standards and Technology, 6.5.3 edition

[4] Melek Z. (2007), “Interactive Simulation of Fire, Burn and Decomposition”, Submitted to the
Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

[5] Stam, J. (1999), “Stable Fluids”, In SIGGRAPH 99 Conference Proceedings, Annual Conference
Series, 121-128

[6] Stam, J. (2003), “Real-Time Fluid Dynamics for Games”, Proceedings of the Game Developer
Conference

[7] Zhao Y., Wei X., Fan Z., Kaufmann A., Qin H. (2003), “Voxels on Fire”, IEEE Visualization 2003,
271-278

WEBLINKS

[8] Nakamura Masatatsu, “Voxelizer source code”, GitHub (last visit: 27.08.2018)
https://github.com/mattatz/unity-voxel

[9] Peel J., Koch G. (2017), “Making it in Unreal: how voxel magic makes the world burn in
F i r e f i g h t i n g S i m u l a t o r ” , P C G a m e s N (l a s t v i s i t : 2 7 . 0 8 . 2 0 1 8)
https://www.pcgamesn.com/firefighting-simulator/unreal-engine-4-voxels-fire-propagation

[10] NVIDIA NvFlow (last visit: 27.08.2018) https://developer.nvidia.com/nvidia-flow

https://github.com/mattatz/unity-voxel
https://developer.nvidia.com/nvidia-flow
https://www.pcgamesn.com/firefighting-simulator/unreal-engine-4-voxels-fire-propagation

	ABSTRACT
	INTRODUCTION
	Related work
	Implementation
	Initialization
	Simulation Loop
	Transport
	Conduction
	Heat Transfer
	Pyrolysis
	Combustion
	Buoyancy

	Results
	Voxelization
	Conduction
	Heat Transfer And Buoyancy
	Pyrolisis And Combustion
	Burning Couch Frame
	Stress Test
	Smoke Layer

	Future plans
	Conclusion
	References
	weblinks

