ACCEPTANCE CRITERIA IN FIRE SAFETY ENGINEERING: A REVIEW AND CASE STUDY Daniel Rosberg

Karl Fridolf Andre Purchase

2

Introduction

- Methods to verify safe egress
 - Qualitative methods
 - Scenario-based methods
 - Risk-based methods
- Scenario-based methods
 - ASET/RSET-analysis
 - Fractional effective dose (FED) concept

- Traditional ASET/RSET analysis
 - Simple (yet complex)
 - Fire model to find ASET
 - evaluated against **absolute values**
 - Evacuation software to find RSET
- Fractional effective dose (FED) concept
 - More common when evacuation through smoke
 - More complex method
 - Fire model (CFD) to calculate concentrations
 - Evacuation model to calculate dose

Acceptance criteria for absolute values

- Defined in some building regulations
 - Sweden
 - New Zealand
- European initiative
 - Still variation between countries
- No uniform set of criteria in a global perspective

115

At a glanc	e
------------	---

Criteria	Swedish building regulations ⁽¹⁾ BBRAD 3	New Zealand Building Code ⁽¹⁾ C/VM2
Smoke layer above floor level	Smoke layer > 1.6 + (ceiling height)*0.1 [m]	-
Visibility	Visibility > 10 m (spaces > 100 m²)	Visibility ⁽²⁾ > 10 m (spaces > 100 m ²)
Visibility	Visibility > 5 m (spaces < 100 m ² or spaces where queuing start early in the evacuation)	Visibility ⁽²⁾ > 5 m (spaces < 100 m ²)
Thermal radiation	Radiation < 2.5 kW/m ² or a short- term radiation of < 10 kW/m ² combined with a maximum energy dose of < 60 kJ/m ² in excess of the energy from a radiation level of 1 kW/m ²	Requirements for radiation exposure along egress routes.
Temperature	Temperature < 80 °C	FED _{thermal} criteria specified
Carbon monoxide toxicity	[CO] < 2000 ppm	FED _{co} criteria specified
Carbon Dioxide toxicity	[CO ₂] < 5%	-
Oxygen availability	[O ₂] > 15%	-
FED	-	$FED_{CO} < 0.3$ $FED_{thermal} < 0.3^{(2)}$

wsp

Acceptance criteria for absolute values

- Simple to work with
- Low sensitivity to changes in the combustibles
- Generally well accepted

- Required inputs
 - Fire size,
 - Growth rate,
 - CO yield,
 - $-CO_2$ yield,
 - Soot yield
 - Heat of combustion

— ...

\\S]

FED tenability acceptance criteria

- Some design situations require alternative measures to assess the consequences of a certain fire scenario
 - When exposed to smoke during longer durations
 - Road tunnels
 - Rail tunnels
 - Sprinklered buildings
- It is common that the responsibility lies with the designer to asses:
 - the methodology to use
 - Which asphyxiant (and/or irritant) gases to consider
 - acceptable accumulated dose to verify life safety against

7

FED tenability acceptance criteria

- Common values
 - FED<1.0
 - 50 % of the population being susceptible
 - FED<0.3
 - 11 % of the population being susceptible

- Input yield data
 - highly dependent on fire conditions
 - Difficult to find reliable information (seldom reported)

Purpose and goals

"Investigate the consequences of applying different methods and acceptance criteria to verify fire life safety." Goals:

- 1. How the fire safety outcome is affected by the method used (i.e. absolute values or FED).
- 2. How the fire safety outcome is affected by the acceptance criteria (e.g. different acceptance criteria for the same variable)
- 3. Address the challenges an engineer faces when working with alternative methods and acceptance criteria compared to traditional or regulated approaches.

Case study: Geometry

Simple geometry

- IMO test 10
- Cabin arrangement on a passenger ship
- 12 cabins
- People asleep
 - No movement
 - 23 occupants

Case study: Geometry

- FDS 6.7.0
- Grid size 5 to 10 cm
- Room height 2.8 m
- Openings at exits
 - Door width x 0.6 m
- Fire source in Cabin #9
- Data recorded at 2 m height

Yield	Units	BBRAD 3	NIST sofa [‡]
Peak fire size (no sprinklers)	MW	5	_*
Growth rate (t-squared)	kW/m²	0.047	_*
Heat of combustion	MJ/kg	20	_*
Fraction of Hydrogen in soot	-	O.1†	0.1 [†]
Yields (per gram of fuel consumed)			
Soot	[g/g]	O.1	_*
Carbon Dioxide (CO ₂)	[g/g]	2.5	1.59
Carbon Monoxide (CO)	[g/g]	0.1	0.0144
Hydrogen Cyanide (HCN)	[g/g]	-	0.0035
Hydrogen Chloride (HCl)	[g/g]	-	0.018
Nitrogen Dioxide (NO ₂)	[g/g]	-	0.07
Acrolein (C ₃ H ₄ O)	[g/g]	-	0.008
Formaldehyde (CH ₂ O)	[g/g]	-	0.02

At a glance

11

wsp

Methodology: Two cases

BBRAD 3 case

- Well defined input data and acceptance criteria
- CO, CO₂ and soot

- Simple chemistry

- Single mixing-controlled reaction
- Fuel molecule contains only C, O, H, and N.
- $-\,C_{4.56}H_{6.56}O_{2.34}N_{0.4}$

NIST Sofa case

 HCN, HCl, NO₂, C₃H₄O and CH₂O also considered

- Complex chemistry

- Additional species were lumped in the model
- The volume fractions calculated from the stoichiometric coefficients of the primitive species

vsp

Results: BBRAD 3 case

- + BBRAD Criteria 1 Layer > 1.6 + 0.1*ceiling height [m]
- \times BBRAD Criteria 2a Visibility > 10 m in rooms > 100 m²
- BBRAD Criteria 2b Visibility > 5 m in rooms < 100 m^2
- □ BBRAD Criteria 3 Radiation < 2.5 kW/m²
- ♦ BBRAD Criteria 4 Temperature < 80 °C
- ♦ BBRAD Criteria 5a CO < 2000 ppm

- \times BBRAD Criteria 5b CO₂ < 5%
- BBRAD Criteria 5c $O_2 > 15\%$
- \triangle FED < 0.3
- \triangle FED < 1.0
- △ FIC < 1.0

Results: NIST Sofa case

- + BBRAD Criteria 1 Layer > 1.6 + 0.1*ceiling height [m]
- \times BBRAD Criteria 2a Visibility > 10 m in rooms > 100 m²
- BBRAD Criteria 2b Visibility > 5 m in rooms < 100 m²
- □ BBRAD Criteria 3 Radiation < 2.5 kW/m²
- ♦ BBRAD Criteria 5a CO < 2000 ppm

- \times BBRAD Criteria 5b CO₂ < 5%
- BBRAD Criteria 5c $O_2 > 15\%$
- \triangle FED < 0.3
- \triangle FED < 1.0
- △ FIC < 1.0

At a glance

+ BBRAD Criteria 1 - Layer > 1.6 + 0.1*ceiling height [m]	\times BBRAD Criteria 5b - CO $_2$ < 5%
\times BBRAD Criteria 2a - Visibility > 10 m in rooms > 100 m ²	BBRAD Criteria 5c - $O_2 > 15\%$
BBRAD Criteria 2b - Visibility > 5 m in rooms < 100 m ²	\triangle FED < 0.3
BBRAD Criteria 3 - Radiation < 2.5 kW/m ²	▲ FED < 1.0
♦ BBRAD Criteria 4 - Temperature < 80 °C	▲ FIC < 1.0

♦ BBRAD Criteria 5a - CO < 2000 ppm

15

\\S]]

Discussion: How the fire safety outcome is affected by the method used?

- Using FED as a criteria will allow for longer ASET compared to using absolute tenability criteria
 - Impaired visibility is the tenability criteria first exceeded
 - Takes 4-8 times longer for FED to exceed 0.3 (without additional species)
- As more species were added
 - FIC<1 matches the visibility criteria
 - Less difference between FED<0.3 and visibility
 - The "simple model" became a good indicator of ASET

Discussion: How the fire safety outcome is affected by the acceptance criteria ?

- The tenability criteria for visibility (both 5 and 10 m) and layer height is exceeded roughly at the same time
 - Two-zone model?
 - Different layer height criteria would most likely have little influence on the results
- Difficult to estimate in the BBRAD case since FIC<1 and FED<1 were not exceeded
- With additional species
 - FIC<1 was first exceeded
 - FED<0.3 approx. one minute later
 - FED<1 approx. one minute after FED<0.3

115

Discussion: The challenges an engineer face

- Applying absolute tenability criteria to a case is pretty straight-forward
 - Mandated input data and acceptance criteria reduce the risk of not getting approval
- Using FED concepts is more difficult
 - No uniform agreement on acceptance criteria
 - No uniform agreement on which species to add
 - Difficult to find reliable data (a big part of this study)
 - Complex chemistry might introduce a greater risk of user-error
- The tools (FDS) can handle the complexity
- Evacuation models need to account for reduced walking speed in smoke

Thank you!

wsp.com

vsp

