Coupling fire and traffic simulation models to set wildfire evacuation triggers

Dapeng Li, Ph.D.

Department of Geography, South Dakota State University

Email: dapeng.li@sdstate.edu

Thomas J. Cova, Ph.D.

Philip E. Dennison, Ph.D.

Department of Geography, University of Utah

Outline

- Introduction to wildfire evacuation
- A review of wildfire evacuation modeling
- System coupling in wildfire evacuation modeling
 - Coupling wildfire spread and traffic simulation models to improve evacuation timing and warning (Li, Cova, & Dennison, in press)
- Ongoing and future work

Setting Wildfire Evacuation Triggers by Coupling Fire and Traffic Simulation Models: A Spatiotemporal GIS Approach

Wildfire evacuation in the western U.S.

Top 20 Most Destructive California Wildfires

	FIRE NAME (CAUSE)	DATE	COUNTY	ACRES	STRUCTURES	DEATHS
1	TUBBS (Under Investigation)	October 2017	Sonoma	36,807	5,643	22
2	TUNNEL - Oakland Hills (Rekindle)	October 1991	Alameda	1,600	2,900	25
3	CEDAR (Human Related)	October 2003	San Diego	273,246	2,820	15
4	VALLEY (Electrical)	September 2015	Lake, Napa & Sonoma	76,067	1,955	4
5	WITCH (Powerlines)	October 2007	San Diego	197,990	1,650	2
6	NUNS (Under Investigation)	October 2017	Sonoma	54,382	1,355	2
7	THOMAS (Under Investigation)	December 2017	Ventura & Santa Barbara	281,893	1,063	1
8	OLD (Human Related)	October 2003	San Bernardino	91,281	1,003	6
9	JONES (Undetermined)	October 1999	Shasta	26,200	954	1
10	BUTTE (Powerlines)	September 2015	Amador & Calaveras	70,868	921	2
11	ATLAS (Under Investigation)	October 2017	Napa & Solano	51,624	781	6
12	PAINT (Arson)	June 1990	Santa Barbara	4,900	641	1
13	FOUNTAIN (Arson)	August 1992	Shasta	63,960	636	0
14	SAYRE (Misc.)	November 2008	Los Angeles	11,262	604	0
15	CITY OF BERKELEY (Powerlines)	September 1923	Alameda	130	584	0
16	HARRIS (Under Investigation)	October 2007	San Diego	90,440	548	8
17	REDWOOD VALLEY (Under Investigation)	October 2017	Mendocino	36,523	544	9
18	BEL AIR (Undetermined)	November 1961	Los Angeles	6,090	484	0
19	LAGUNA (Arson)	October 1993	Orange	14,437	441	0
20	ERSKINE (Under Investigation)	June 2016	Kern	46,684	386	2

^{**&}quot;Structures" include homes, outbuildings (barns, garages, sheds, etc) and commercial properties destroyed.

^{***}This list does not include fire jurisdiction. These are the Top 20 regardless of whether they were state, federal, or local responsibility.

The Tubbs Fire

- Oct. 8 31, 2017
- The most destructive wildfire in California history
 - 5,100+ structures
 - 22 deaths

October 9, 2017, MODIS

November 2017, Napa, Sonoma fires, Landsat 8, bands 753

Wildfire evacuation modeling

- Evacuation traffic simulation (Southworth, 1991)
- Wildfire evacuation traffic simulation (Cova & Johnson, 2002)
- Recent trends
 - System coupling (Beloglazov et al., 2016; Cova et al., 2017)
 - Interdisciplinary collaboration (Trainor et al., 2012)

Triggers in environmental hazards

System coupling in wildfire evacuation

Interdisciplinary collaboration

Physics, mathematics, etc.

GIS, computer engineering, etc.

Trigger modeling

- Wildfire evacuation trigger-points (Cova et al., 2005)
- Wildfire evacuation trigger modeling

Trigger modeling

➤ Fire spread

> Evacuation timing

>Evacuation warning

≻Communication

System coupling in wildfire evacuation modeling

Evacuation timing and warning

Study site: Julian, California

Study site: Julian, California

Pictures taken by Dapeng Li on 8/9/2015 in Julian, California

Setting wildfire evacuation triggers by coupling fire and traffic simulation models

Step 1: estimate evacuation times using traffic simulation

Illustration of the four estimated evacuation times

Step 2: create probability-based trigger buffers

Illustration of probability-based trigger buffers

(a) Cumulative probability

(b) Probability-based trigger buffers

Step 3: Conceptual diagram of the evaluation procedure

Person-threat distance (Beloglazov, Almashor, Abebe, Richter, and Steer, 2016) Spatio-temporal computation and visualization

Households and the evacuation route system

MATSim: Agent-based microscopic traffic simulation

- An open-source agent-based microscopic traffic simulator
- Trips from the origin to the destination
 - The number of "persons" from each household
 - A Poisson distribution
- Agents will choose the shortest path
- Departure times
 - A normal distribution: $N(\mu, \sigma)$
- Calculate the evacuation times taken when 25%, 50%, 75%, and 95% of the evacuees have arrived at the safe areas $(T_{25}T_{50},T_{75},T_{95})$

Fire perimeters from wildfire simulation

Wind direction	•	Dea	Dead fuel moisture (%)			Live fuel moisture (%)	
	(km/h)	1 h	10 h	100 h	Wood	Herbaceous	
South	16	5	5	5	65	65	

Two evacuation scenarios

Table 1 Parameters for different evacuation scenarios

Scenario	λ	μ (min)	σ (min)	earliest (min)	latest (min)
1	2	40	20	0	80
2	4	40	20	0	80
Scenario		T ₂₅	T ₅₀	T_{75} T_{95}	5

Scenario		T_{25}	T_{50}	T_{75}	T_{95}
1	min	45 (1%)	78 (4%)	113 (2%)	141 (2%)
	mean	49 (64%)	82 (56%)	119 (56%)	149 (58%)
	max	53 (100%)	88 (100%)	128 (100%)	160 (100%)
	sd	1.5	2.4	3.4	4.2
2	min	69 (4%)	139 (2%)	210 (1%)	268 (1%)
	mean	72 (74%)	144 (55%)	219(63%)	278 (57%)
	max	75 (100%)	151	229 (100%)	292 (100%)
			(100%)		
	sd	1.3	2.7	4.0	4.2

Trigger buffers generated using 100% evacuation times

Summary

- System coupling
 - Fire spread and trigger modeling, traffic simulation
 - Spatiotemporal modeling
- Agent-based modeling and simulation
 - Household-level evacuation warning
 - Agent-based evacuation traffic simulation
- Research and Development (R&D)
 - Object-oriented design/programming (OOD/P)
 - C/C++, Python, Java, R
 - Various GIS tools

IBM Research's work on wildfire evacuation modeling and simulation

Simulation of wildfire evacuation with dynamic factors and model composition

Ongoing work: Open wildfire evacuation trigger modeling

Future work

- Cloud-based wildfire evacuation modeling
 - Cloud computing
- Household-level evacuation warning systems
 - Mobile computing
 - Location-based services (LBS)
- Wildfire evacuation planning
 - High-performance computing
- House loss in wildfires
 - Information needs
 - Notification systems

Reference

- Beloglazov, A., Almashor, M., Abebe, E., Richter, J., & Steer, K. C. B. (2016). Simulation of wildfire evacuation with dynamic factors and model composition. Simulation Modelling Practice and Theory, 60, 144-159.
- Cova, T.J., Dennison, P.E., Li, D., Siebeneck, L.K., Drews, F.A., Lindell, M.K. (2017). "Warning triggers in environmental hazards: who should be warned to do what and when?" Risk Analysis.
- Cova, T. J., & Johnson, J. P. (2002). Microsimulation of neighborhood evacuations in the urban-wildland interface. Environment and Planning A, 34(12), 2211-2230.
- Dennison, P. E., Cova, T. J., & Mortiz, M. A. (2007). WUIVAC: a wildland-urban interface evacuation trigger model applied in strategic wildfire scenarios. Natural Hazards, 41(1), 181-199.
- Li, D. "Geocoding and reverse geocoding". (2018). In Cova, T.J. & Tsou, M. (Eds.), Comprehensive Geographic Information Systems. Vol. 1, Elsevier.
- Li, D., Cova, T. J., & Dennison, P. E. (2015). A household-level approach to staging wildfire evacuation warnings using trigger modeling. Computers, Environment and Urban Systems, 54, 56-67.
- Li, D., Cova, T. J., & Dennison, P. E. (2017). Using reverse geocoding to identify prominent wildfire evacuation trigger points. *Applied Geography*, 87, 14-27.
- Li, D., Cova, T.J. & Dennison, P.E. (2018). Fire Technology. https://doi.org/10.1007/s10694-018-0771-6
- Southworth, F. (1991). Regional evacuation modeling: A state-of-the-art review. Oak Ridge, TN, USA:
 Oak Ridge National Laboratory.
- Trainor, J. E., Murray-Tuite, P., Edara, P., Fallah-Fini, S., & Triantis, K. (2012). Interdisciplinary approach to evacuation modeling. Natural Hazards Review, 14(3), 151-162.

Q & A

Dapeng Li, Ph.D.

Department of Geography, South Dakota State University

Email: dapeng.li@sdstate.edu

Website: http://lidapeng.github.io

GitHub: https://github.com/lidapeng

