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Background and Motivation

• Structural analysis

• Lateral and downward flame spread

• Smoldering combustion
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Ohlemiller & Shields, 2008Choe, 2017 Huang et al., 2016
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Integration into FDS master

FEMTC 2018 3D Heat Transfer and Pyrolysis in FDS 4

TEMPERATURE SLICE



Governing Equations
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Local deformation 

affects heat flux



Computing Heat Flux

Fourier’s law:  
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Input Parameters
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HT3D=T invokes 2-way 
coupling with gas phase



Heat Diffusion in Steel I-Beam
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Any mention of commercial products within this paper is for information 
only; it does not imply recommendation or endorsement by NIST.



Internal Heating in Sphere
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• Constant, uniform internal 

heat generation

• Constant, ambient surface 

temperature
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Density Definitions

1. Material

2. Bulk

3. Total solid
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Modeling Deformation

• Changes in composition generally cause 
contraction or expansion of material

• Some challenges in 3D:
1. Mechanical constitutive relation

2. Advection term in conservation equations

3. Moving boundaries

• Simple solution:  
1. Subgrid scale models of fluxes

2. Burn away—remove solid cells as cell density 
goes to zero
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Heat Flux with Local 
Deformation

• As material contracts (expands), distance 
between material points decreases (increases)
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Local Material Deformation

Two simple models:
1. Isotropic:

2. Unidirectional:
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Compute new

densities

using old 

temperatures

Compute solid 

volumes

using new 

densities

Compute new 

temperatures

using heat 

fluxes

Compute heat 

fluxes on 

solid volumes
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PMMA Slab: Mass Loss Rate 
and Thickness
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Radiative Heat Transfer

• Many problems are 
thermally thick

• Diffusion approximation 
is extremely efficient in 
3D
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Material Absorption Coefficient (1/m) Thermal Thickness for 1 cm slab

HDPE 1300 13

PMMA 2700 27

PA66 3920 39.2



Radiation Verification

FEMTC 2018 3D Heat Transfer and Pyrolysis in FDS 17

Exact solution from Modest, 

Radiative Heat Transfer, 2nd

Edition.
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Pyrolysis Gas Transport
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?



Burn Away
• 40 cm cubes

• Low density “foam”

• Compartment walls 
at 1100 °C
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3D Model 1D Model
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Solid Sub-Surface Heat Flux 
Model
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Closing remarks

• Development of an efficient 3D pyrolysis model 
is needed for reliable predictions of flame 
spread (work in progress)

• Subgrid-scale models of heat and mass fluxes 
were used to account for local deformation

• The resultant model has been verified and 
tested for several scenarios

• Next steps:
• Anisotropy
• Thin obstructions (coupling with 1D model?)
• Porous media flow
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