
How to Model Complex Behavior Using Simple Control Functions

Jason Floyd

JENSEN HUGHES
Rockville, MD 20850

jfloyd@jensenhughes.com

Introduction

Prior to FDS 5, an FDS user had only a couple of options for controlling the behavior of a
simulation. An obstruction, a hole, or a vent could be activated or deactivated at a specific time
or by a heat detector reaching a specified temperature. This was done with keywords for each
option on the OBST, HOLE, and VENT inputs. As FDS usage increased there were requests for
more options – controlling on the basis of flow speed or gas temperature, controlling when a
specific number of detectors operated, and other requests. It was quickly apparent that adding
more and more keywords for each method to all the geometry inputs was going to result in a lot
of duplicated code and bloated lists of inputs.

Instead of adding special cases for each method of controlling the simulation, FDS 5
development included a generic approach for doing this. This consisted of three parts:

1. All methods of measuring the simulation were grouped into two sets of inputs called
DEVC and PROP. This combined the prior input groups for smoke detection (SMOD),
sprinklers (SPRK), heat detection (HEAT), and point measurements (THCP which was
short for thermocouple even though it included other output types). DEVC defines a
measurement device (including detectors, sprinklers, and measurement) and its
location. PROP defines a set of common properties (such as a set of sprinkler
characteristics) that can be referred to by multiple devices.

2. The ability to perform logical and mathematical operations on the outputs of DEVC was
added by the new group called CTRL.

3. Inputs whose behavior might change during a simulation were provided with the ability
to specify either a DEVC_ID or a CTRL_ID.

With these changes, rather than having to add a large number of keywords to the geometry
inputs for each new method of control, all that is needed is define the method via DEVC and
CTRL inputs. If it is determined that a control approach is not possible with the current CTRL
and DEVC functions, adding a new CTRL or DEVC function would make that approach
immediately available to all controllable inputs. The remainder of this paper will discuss basic
control logic and provide examples of how to combine simple functions to obtain complex
behavior.

Basic Control Logic

Each DEVC or CTRL begins a simulation with a logical state. That state can either be TRUE or
FALSE. The state defines the behavior of an input referring to a DEVC or CTRL. For example, if
a HOLE refers to a DEVC with an initial state of TRUE, then at the start of the simulation the
HOLE will be present. If the initial state was FALSE, then the HOLE would be filled at the start
of the simulation. The logical state can change, or trip, during a simulation. This can be done by
either having the numerical value of the DEVC or CTRL reach a SETPOINT or, in the case of a
logical CTRL, having the logical operation applied to inputs result in a change in state.

mailto:jfloyd@jensenhughes.com

The SETPOINT defines a value where the initial state of a DEVC or CTRL with a numerical
value changes to its opposite state (TRUE becomes FALSE). This can occur when the value
rises above the setpoint, or when it falls below the setpoint. This behavior is controlled by
TRIP_DIRECTION with a positive value indicating a trip when rising above the SETPOINT.

There are two classes of CTRL in FDS: those that only output a logical state and those that
output a numerical value along with a logical state. An example of the first is an AND function.
This function outputs the logical state of TRUE if all of its inputs are TRUE and is FALSE
otherwise. An example of the second is the SUM function. This function takes numerical values
as its input and outputs the sum of those values. The inputs can either be other numerical CTRL
functions, DEVCs, or a CONSTANT. For a DEVC input, the function uses the smoothed value of
the DEVC, determined by the SMOOTHING_FACTOR, and not the instantaneous value. It can
also be given a SETPOINT. While a logical control function does not have a value, one can use
a CONTROL DEVC to output the value of 0 when the CTRL is FALSE and 1 when the CTRL is
TRUE.

CTRL functions in FDS are evaluated recursively in the order they are defined in the FDS input
file. Therefore, the order in which CTRL functions are listed in the input file does not matter. The
same is not true with DEVC. DEVC are evaluated once each timestep prior to the evaluation of
CTRL. Consider an example where an OR CTRL function monitors two DEVC with a third
DEVC converting the value of the OR to a 0 or 1 which is then used as an input in a MULTIPLY
function where the input is multiplied by 5. In the first timestep, the setpoints of the first two
DEVC are initially FALSE along with the OR function. The values of the third DEVC and the
MULTIPLY are 0. In the next timestep one of the DEVC becomes TRUE. As a result, the OR
function turns TRUE. However, the DEVC monitoring this function will not be updated until the
next timestep, and, therefore, the third CTRL function remains at 0. In the third timestep, the
third DEVC sees that the first CTRL is TRUE and its value becomes 1. As a result, when the
CTRL are evaluated, the MULTIPLY function becomes 5. This is illustrated in Figure 1 below.

Figure 1: Example of timing of DEVC and CTRL updates during a timestep

DEVC 1

DEVC 2

DEVC 3

CTRL 1

CTRL 2

0

0

0

0

1

5

Time Step
1

Time Step
2

Time Step
3

Creating New Inputs and Outputs

One use of the math CTRL functions is to create new types of input and outputs. Examples
include new quantities that are derived from already existing output types, perform post-
processing of data, or developing what are essentially simple user-defined subroutines. A few
examples are shown below:

Example 1: Finding Total Outflow Through Multiple Openings

Consider a fire simulation where smoke is being vented through multiple roof vents and you
wish to know the total flow out the roof openings. The flow through each vent can be determined
by using a DEVC with QUANTITY=’MASS FLOW’. If all the roof vents have the same
orientation, then one could define the XB of the DEVC to encompass the openings of all the
vents. However, it the vents have different orientations, then this approach would not work as
MASS FLOW requires a single orientation. The SUM CTRL function could be used to obtain the
total flow. In the example below a 3 m x 3 m x 3 m room has 2 m x 0.4 m wall openings at the
top of each wall. The walls are 0.1 m thick and the mesh extends 0.5 m outside of the walls (the
lower interior corner or the room is at 0.6,0.6,0.0).

&HOLE XB= 0.45,0.65,1.1,3.1,2.6,3.0/ Vent 1

&HOLE XB= 3.55,3.75,1.1,3.1,2.6,3.0/ Vent 2

&HOLE XB= 1.1,3.1,0.45,0.65,2.6,3.0/ Vent 3

&HOLE XB= 1.1,3.1,3.55,3.75,2.6,3.0/ Vent 4

&DEVC XB= 0.55,0.55,1.1,3.1,2.6,3.0, QUANTITY=’MASS FLOW’, IOR=1, ID=’MF Vent 1’/

&DEVC XB= 3.65,3.65,1.1,3.1,2.6,3.0, QUANTITY=’MASS FLOW’, IOR=1, ID=’MF Vent 2’/

&DEVC XB= 1.1,3.1,0.55,0.55,2.6,3.0, QUANTITY=’MASS FLOW’, IOR=2, ID=’MF Vent 3’/

&DEVC XB= 1.1,3.1,3.65,3.65,2.6,3.0, QUANTITY=’MASS FLOW’, IOR=2, ID=’MF Vent 4’/

&DEVC QUANTITY=’CONTROL VALUE’, CTRL_ID=’SUM MF’, ID=’Total Mass Flow’, UNITS=’kg/s’/

&CTRL ID=’SUM MF’, FUNCTION_TYPE=’SUM’, INPUT_ID=’MF Vent 1’, ’MF Vent 2’, ’MF Vent 3’, ’MF Vent 4’/

If you only wanted the total mass flow output and did not wish to see the individual vent flows in
the devc.csv output file, you could add OUTPUT=.FALSE. to those lines. Note that the total
mass flow output will be delayed one timestep compared to the individual vents per the
discussion for Figure 1. Also note that the value of a DEVC is the average value of the DEVC’s
value over the output internal DT_DEVC. Therefore, if one creates an output that uses a
nonlinear math function, like an exponential, then post-processing the same function using just
the data in the devc.csv file will not yield the same results.

An example is shown in Table 1 below. In this example there are 1 s time steps and DT_DEVC
is three seconds. The second column in the table shows the output of some DEVC. The third
column shows the output of that DEVC squared, which could be done in FDS using a POWER
CTRL function. The 3-second average of the original DEVC is 4.33. If this value is squared, the
result is 18.8. This does not equal the 3-second average of a DEVC outputting the square of the
first DEVC.

Table 1: Illustration of DT_DEVC time averaging

Time (s) Original DEVC DEVC Squared Output

1 1 1

2 3 9

3 9 81

3 s Average 4.33 30.3

Example 2: Integrating the Total Outflow Over an Interval

Continuing with the first example, you now wish to know how much mass flow occurred between
100 and 110 s. If the list of control functions in the FDS User’s Guide is consulted, you will see
that one of the functions is a PID function. This function outputs a value that is the sum of a
constant times an error function, a constant times the derivative of the error function, and a
constant times the integral of the error function. If the proportional and derivate constant are set
to 0, and the integral constant set to 1, then the PID function will output the integral of the error.
If the error function is set to the total mass flow, then the PID function will output the integral of
the mass flow. However, this would be the integral over the entire simulation time. To limit it to
just to 100 to 110 s, we need to set the total mass flow to be zero when the time is not between
100 and 110 s. One way to accomplish this is to multiply the mass flow by 1 when the time is
between 100 and 110 s and 0 otherwise. This can be done by using the MULTIPLY and
CUSTOM functions. The additional lines of input needed to do this are shown below:

&DEVC QUANTITY=’TIME’, ID=’Time’/

&DEVC QUANTITY=’CONTROL VALUE’, CTRL_ID=’INTEGRAL MF’, ID=’Integrated Total Mass Flow’, UNITS=’kg’/

&CTRL ID=’MULTIPLY CONSTANT’, FUNCTION_TYPE=’CUSTOM’, INPUT_ID=’Time’, RAMP_ID=’Time Ramp’/

&RAMP ID=’Time Ramp’, T=99.997 F=0/

&RAMP ID=’Time Ramp’, T=100.00, F=1/

&RAMP ID=’Time Ramp’, T=110.00, F=1/

&RAMP ID=’Time Ramp’, T=110.003, F=0/

&CTRL ID=’INTEGRAND’, FUNCTION_TYPE=’MULTIPLY’, INPUT_ID=’MULTIPLY CONSTANT’,’SUM MF’/

&CTRL ID=’INTEGRAL MF’, FUNCTION_TYPE=’PID’, INPUT_ID=’INTEGRAND’, PROPORTIONAL_GAIN=0,

DIFFERENTIAL_GAIN = 0, INTEGRAL_GAIN=1/

Note that this approach will have a slight error as the RAMP function will have a small region
where the multiplier is not 0 when it should be; however, if one were to post process using the
devc.csv file, then there would also be a slight error as the output times in the file would
probably not include the exact values of 100 and 110 s. When creating the RAMP for a
CUSTOM function keep in mind that FDS precomputes a lookup table for the RAMP by dividing
the total range of the RAMP into 5000 equally spaced intervals. For example, if the RAMP
consisted of two points (0,0) and (1,1), then the RAMP would be pretabulated at intervals of
0.0002.

Example 3: Controlling the Mass Flow of Multiple Inlets

In this example you have a geometry where there are three flow inlets with areas of 0.4, 0.9,
and 1 m2. You wish to inject a total mass flow of air of 1 kg/s, but divide it over the inlets as a
function of the fraction of the incident radiant heat each inlet sees. This requires measuring the
radiant heat over each inlet, determining the fraction of that heat that each inlet sees, and then
computing the mass flow for each inlet. This can be done as follows.

First the inlet vents are defined. Each inlet is assigned a total mass flux that gives 1 kg/s. For
each inlet, a RAMP is used to assign a fraction of the total mass flux where the independent
variable for the RAMP will come from a control function that determines the flow fraction for
each inlet.

&VENT XB=0.2,0.4,0.2,0.4,0.0,0.0,SURF_ID=’FLOW1’/

&SURF ID=’FLOW1’,SPEC_ID(1)=’AIR’,MASS_FLUX(1)=2.5,RAMP_MF(1)=’RAMP1’/

&RAMP ID=’RAMP1’,T=0,F=1,CTRL_ID=’FRACTION1’/

&RAMP ID=’RAMP1’,T=1,F=1/

&VENT XB=0.5,0.8,0.5,0.8,0.0,0.0,SURF_ID=’FLOW2’/

&SURF ID=’FLOW2’,SPEC_ID(1)=’AIR’,MASS_FLUX(1)=1.111111,RAMP_MF(1)=’RAMP2’/

&RAMP ID=’RAMP2’,T=0,F=1,CTRL_ID=’FRACTION2’/

&RAMP ID=’RAMP2’,T=1,F=1/

&VENT XB=1.0,2.0,1.0,2.0,0.0,0.0,SURF_ID=’FLOW3’/

&SURF ID=’FLOW3’,SPEC_ID(1)=’AIR’,MASS_FLUX(1)=1.,RAMP_MF(1)=’RAMP3’/

&RAMP ID=’RAMP3’,T=0,F=1,CTRL_ID=’FRACTION3’/

&RAMP ID=’RAMP3’,T=1,F=1/

Next the incident flux to each inlet is determined, and the fractions calculated.

&DEVC XB=0.2,0.4,0.2,0.4,0.0,0.0, QUANTITY=’INCIDENT HEAT FLUX’,

 STATISTICS=’SURFACE INTEGRAL’,ID=’HF1’/

&DEVC XB=0.5,0.8,0.5,0.8,0.0,0.0, QUANTITY=’INCIDENT HEAT FLUX’,

 STATISTICS=’SURFACE INTEGRAL’,ID=’HF2’/

&DEVC XB=1.0,2.0,1.0,2.0,0.0,0.0, QUANTITY=’INCIDENT HEAT FLUX’,

 STATISTICS=’SURFACE INTEGRAL’,ID=’HF3’/

&CTRL ID=’SUM HF’,FUNCTION_TYPE=’SUM’,INPUT_ID=’HF1’,’HF2’,’HF3’/

&CTRL ID=’FRACTION1’,FUNCTION_TYPE=’DIVIDE’,INPUT_ID=’HF1’,’SUM HF’/

&CTRL ID=’FRACTION2’,FUNCTION_TYPE=’DIVIDE’,INPUT_ID=’HF2’,’SUM HF’/

&CTRL ID=’FRACTION3’,FUNCTION_TYPE=’DIVIDE’,INPUT_ID=’HF3’,’SUM HF’/

Consider the case where the first inlet sees 1 kW (HF1), the second inlet sees 2 kW (HF2), and
the third inlet sees 0.5 kW (HF3). The total incident heat is 3.5 kW (SUM HF) and the fractions
are 0.286 (FRACTION1), 0.571 (FRACTION2), and 0.143 (FRACTION3). The MASS_FLUX
values for each vent would then be computed as 0.714, 0.634, and 0.143 kg/(m2·s).

Modeling Complex Behaviors

Control functions can be combined to develop behaviors to represent real world electrical and
mechanical systems whose response to fire will impact the effects of the fire. This section will
present a few examples of these systems. In developing the control logic, first start by listing all
the states of the system that need to be represented. Then list what events are required for
each state. Finally determine what inputs are needed to generate the required events.

Example 4: Smoke Control System

The first example is a smoke control system. System states that need to be represented for a
smoke control system are deploying any smoke barriers that are part of the system, opening
any passive makeup air openings, and turning on the smoke exhaust fan. Deploying smoke
barriers and operating makeup air openings requires detection of a fire. Depending on the
building design, in the simulation that detection event could be a combination of spot smoke
detection, beam detection, and sprinkler operation. Operating the exhaust fans requires
detection of a fire and successful alignment of ventilation. The exhaust fans themselves will
require a small amount of time to reach their full flow rate. A representation of this is shown in
Figure 2 for a system where detection is via beam detector or sprinkler operation and makeup
air is via operable doors.

Figure 2: Example 4 logic flow for smoke control system

If for our design it takes one minute for doors to open once they receive a signal, and the fans
take 30 s to reach full flow, then the inputs required would be:

&VENT XB=…, SURF_ID=’EXHAUST’, CTRL_ID=’DOORS OPEN’/

&SURF ID=’EXHAUST’, VOLUME_FLOW=…, RAMP_V=’FAN RAMP’/

&RAMP ID=’FAN RAMP’, T= 0, F=0/

&RAMP ID=’FAN RAMP’, T=30, F=1/

&HOLE XB= …, CTRL_ID=’DOORS OPEN’/ Door 1

&HOLE XB= …, CTRL_ID=’DOORS OPEN’/ Door 2

&DEVC ID=’BEAM’, XB=…, QUANTITY=’PATH OBSCURATION’, SETPOINT = …/

&DEVC ID=’SPRK 1’, XYZ=…, PROP_ID=’MY SPRK’/

&DEVC ID=’SPRK 2’, XYZ=…, PROP_ID=’MY SPRK’/

…

&DEVC ID=’SPRK N’, XYZ=…, PROP_ID=’MY SPRK’/

&CTRL ID=’SPRK ACTIVATE’, FUNCTION_TYPE=’ANY’, INPUT_ID=’SPRK 1’,’SPRK 2’,…,’SPRK N’/

&CTRL ID=’START OPEN DOORS’, FUNCTION_TYPE=’ANY’, INPUT_ID=’SPRK ACTIVATE’,’BEAM’/

&CTRL ID=’DOORS OPEN’, FUNCTION_TYPE=’TIME_DELAY’, INPUT_ID=’START OPEN DOORS’, DELAY=60/

Example 5: Controlling the Exhaust Flow Based on Temperature

In this example three temperature measurements (T1, T2, and T3) are being taken in a space. If
one of T1 or T2 are above 50 °C, then an exhaust fan will operate at 1 m3/s. If only T3 is above

50 °C, then the fan will operate at 0.5 m3/s. If any two are above 50 °C, then the fan will operate

at 2 m3/s. If all three are above 50 °C, then the fan will operate at 4 m3/s. Figure 3 shows the

logic required for each fan state. The required inputs are the three temperature measurements.

Fan
On

BeamSprinkler

OR

AND

BeamSprinkler

OR

Open
Doors

Figure 3: Logic for the Example 5 fan states

Since there are five cases to consider (no exhaust and the four rates), this suggests the use of a
RAMP function for the exhaust vent. What is needed, therefore, is a method to assign the
various fan states a numerical value to be used as an input for a RAMP whose output will be the
volume flow of the exhaust. Recall that the logical state of a CTRL can be assigned a value by
using a DEVC with CONTROL. If we were to assign T1 and T2 a value of 1 when TRUE and T3
a value of 0.5 when TRUE with all being 0 when FALSE, then Table 2 shows the sum of the
values for each combination of outcomes along with the resulting fan flow. Table 2 defines a
RAMP with 5 sections. The input lines to accomplish this are shown following the table.

Fan
4 m3/s

T1>50 °C T2>50 °C T3>50 °C

AND

Fan
1 m3/s

XOR

AND

T3≤50 °C

T1>50 °C T2>50 °C

Fan
0.5 m3/s

T1≤50 °C T2≤50 °C T3>50 °C

AND

Fan
2 m3/s

XOR

T1>50 °C T2≤50 °C T3>50 °C

AND

T1≤50 °C T2>50 °C T3>50 °C

AND

T1>50 °C T2>50 °C T3≤50 °C

AND

Table 2: Sum of control function values for Example 5

Temperature Sum of Control

Value

Fan Flow

(m3/s) T1 > 50 °C T2 > 50 °C T3 > 50 °C

TRUE TRUE TRUE 2.5 4

TRUE TRUE FALSE 2 2

TRUE FALSE TRUE 1.5 2

TRUE FALSE FALSE 1 1

FALSE TRUE TRUE 1.5 2

FALSE TRUE FALSE 1 1

FALSE FALSE TRUE 0.5 0.5

FALSE FALSE FALSE 0 0

&VENT XB=…, SURF_ID=’EXHAUST’/

&SURF ID=’EXHAUST’, VOLUME_FLOW=-1, RAMP_V=’Exhaust Ramp’/

&RAMP ID=’Exhaust Ramp’, T=0.0, F=0.0, CTRL_ID=’T Sum’/

&RAMP ID=’Exhaust Ramp’, T=0.5, F=0.5/

&RAMP ID=’Exhaust Ramp’, T=1.0, F=1.0/

&RAMP ID=’Exhaust Ramp’, T=1.5, F=2.0/

&RAMP ID=’Exhaust Ramp’, T=2.0, F=2.0/

&RAMP ID=’Exhaust Ramp’, T=2.5, F=4.0/

&DEVC XYZ=…, QUANTITY=’TEMPERATURE’, SETPOINT=50., LATCH=.FALSE., SMOOTHING_FACTOR=0.5, ID=’T1’/

&DEVC XYZ=…, QUANTITY=’TEMPERATURE’, SETPOINT=50., LATCH=.FALSE., SMOOTHING_FACTOR=0.5, ID=’T2’/

&DEVC XYZ=…, QUANTITY=’TEMPERATURE’, SETPOINT=50., LATCH=.FALSE., SMOOTHING_FACTOR=0.5, ID=’T3’/

&CTRL ID=’T1 Status’, FUNCTION_TYPE=’ANY’, INPUT_ID=’T1’/

&CTRL ID=’T2 Status’, FUNCTION_TYPE=’ANY’, INPUT_ID=’T2’/

&CTRL ID=’T3 Status’, FUNCTION_TYPE=’ANY’, INPUT_ID=’T3’/

&DEVC QUANTITY=’CONTROL’, CTRL_ID=’T1 Status’, ID=’T1 Value’/

&DEVC QUANTITY=’CONTROL’, CTRL_ID=’T2 Status’, ID=’T2 Value’/

&DEVC QUANTITY=’CONTROL’, CTRL_ID=’T3 Status’, ID=’T3 Value’/

&CTRL ID=’T3 Mult’, FUNCTION_TYPE=’MULTIPLY’, INPUT_ID=’CONSTANT’,’T3 Value’, CONSTANT=0.5/

&CTRL ID=’T Sum’, FUNCTION_TYPE=’SUM’, INPUT_ID=’T1 Value’,’T2 Value’,’T3 Mult’/

The RAMP function follows the values shown in Table 2. In order to convert the status of the
temperature values into a 0, 0.5, or 1, we need to first convert the DEVC to a CTRL status and
then output that CTRL status as a 0 or 1 using a second set of DEVC. The 0.5 value for T3 is
obtained by using a MUTLIPLY function.

Example 6: Controlling the Temperature of a Furnace

What if we wish to model a behavior that doesn’t have simple discrete states like Example 4
did? An example of this is a fire test furnace where the flow rate of the burner is continuously
adjusted to maintain a specific furnace temperature. You could by trial-and-error develop a
RAMP for the furnace fuel and air supply that obtains the correct temperature for an empty
furnace. This would likely take many trials to develop the correct ramp, and once a sample is
placed in the furnace, the RAMP may no longer have an acceptable error. An alternative
approach is to develop a control function that regulates the fuel and air supply. A function that

accomplishes this is the PID function were PID stands for Proportional-Integral-Derivative. This
function takes as its input an error value, 𝑒(𝑡), which is the difference between the desired state
of the system (in this case the furnace temperature) and its actual state. It outputs a controlling
signal, 𝑢(𝑡), that is a function of the current error (proportional), the integral of the error over
time (integral), and the derivative of the error (derivative). The equation for this is shown below
where the 𝐾 are gain multipliers for the components of the function:

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖∫ 𝑒(𝑡)𝑑𝑡
𝑡

0

+𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡

There are various approaches to tuning a PID controller, but a manual approach is to first set
the proportional gain to avoid oscillations in the value of the output, then adjust the integral gain
to reduce the magnitude of the error while still avoiding oscillations, and then finally set the
differential gain.

Use of a PID controller is illustrated with a simple example of a 1 m3 box with a fuel (red) and air
inlet (blue) at the bottom of one wall and an OPEN vent (white square) at the top of the opposite
wall, see Figure 4. Four thermocouples are placed in the upper corners of the box (green dots),
and their average value is compared against the predefined temperature curve shown in Figure
5. The walls are set to an insulating material. The fuel vent is defined with a peak mass flux of
0.1 kg/(m2·s), and the air vent is defined with a peak mass flux of 0.5 kg/(m2·s) which provides a
slight amount of excess air. By linking both the fuel and air vents to a linear ramp controlled by a
PID controller, we can attempt to find values of the PID inputs that result in a good match to the
temperature curve.

Figure 4: Geometry for Example 6

Figure 5: Target temperature for Example 6

The basic inputs are shown below. The goal is to find values for x, y, and z on the PID input.

&HEAD CHID='furnace', TITLE='Demo of PID for furnace control'/

&MESH XB=0,1,0,1,0,1, IJK=20,20,20/

&TIME T_END=100./

&REAC FUEL='PROPANE', SOOT_YIELD=0.02/

&MATL ID='INSULATION', DENSITY=150, CONDUCTIVITY=0.01, SPECIFIC_HEAT=1./

&SURF ID='WALL', MATL_ID='INSULATION', THICKNESS=0.1, COLOR='GRAY', DEFAULT=.TRUE./

&SURF ID='FUEL', SPEC_ID(1)='PROPANE', MASS_FLUX(1)=0.1, RAMP_MF(1)='FLOW', COLOR='RED'/

&SURF ID='AIR', SPEC_ID(1)='AIR', MASS_FLUX(1)=0.5, RAMP_MF(1)='FLOW', COLOR='BLUE'/

&VENT XB=0,0,0.45,0.55,0.10,0.20, SURF_ID='FUEL'/

&VENT XB=0,0,0.45,0.55,0.05,0.10, SURF_ID='AIR'/

&VENT XB=0,0,0.45,0.55,0.20,0.25, SURF_ID='AIR'/

&VENT XB=0,0,0.40,0.45,0.05,0.25, SURF_ID='AIR'/

&VENT XB=0,0,0.55,0.60,0.05,0.25, SURF_ID='AIR'/

&VENT XB=1,1,0.40,0.60,0.80,1.0, SURF_ID='OPEN'/

&DEVC XYZ=0.1,0.1,0.95, QUANTITY='THERMOCOUPLE', ID='T1'/

&DEVC XYZ=0.1,0.9,0.95, QUANTITY='THERMOCOUPLE', ID='T2'/

&DEVC XYZ=0.9,0.1,0.95, QUANTITY='THERMOCOUPLE', ID='T3'/

&DEVC XYZ=0.9,0.9,0.95, QUANTITY='THERMOCOUPLE', ID='T4'/

&DEVC XYZ=0,0,0, QUANTITY='TIME', ID='Timer'/

&RAMP ID='FLOW', CTRL_ID='PID Out', T=0, F=0/

&RAMP ID='FLOW', CTRL_ID='PID Out', T=1, F=1/

&RAMP ID='TEMPERATURE', T= 0, F= 20/

&RAMP ID='TEMPERATURE', T= 10, F= 50/

&RAMP ID='TEMPERATURE', T= 30, F=100/

&RAMP ID='TEMPERATURE', T= 60, F=200/

&RAMP ID='TEMPERATURE', T= 90, F=250/

&RAMP ID='TEMPERATURE', T=100, F=300/

&CTRL ID='TSUM', FUNCTION_TYPE='SUM', INPUT_ID='T1','T2','T3','T4'/

&CTRL ID='TAVG', FUNCTION_TYPE='DIVIDE', INPUT_ID='TSUM','CONSTANT', CONSTANT=4/

&CTRL ID='FTEMP', FUNCTION_TYPE='CUSTOM', INPUT_ID='Timer', RAMP_ID='TEMPERATURE'/

&CTRL ID='ERROR', FUNCTION_TYPE='SUBTRACT', INPUT_ID='FTEMP','TAVG'/

&CTRL ID='PID Out', FUNCTION_TYPE='PID', INPUT_ID='ERROR', PROPORTIONAL_GAIN=x, INTEGRAL_GAIN=y,

DIFFERENTIAL_GAIN=z/

&DEVC XYZ=0,0,0, QUANTITY='CONTROL VALUE', ID='TAVG V', CTRL_ID='TAVG'/

&DEVC XYZ=0,0,0, QUANTITY='CONTROL VALUE', ID='FTEMP V', CTRL_ID='FTEMP'/

&DEVC XYZ=0,0,0, QUANTITY='CONTROL VALUE', ID='ERROR V', CTRL_ID='ERROR'/

&DEVC XYZ=0,0,0, QUANTITY='CONTROL VALUE', ID='PID Out V', CTRL_ID='PID Out'/

0

50

100

150

200

250

300

0 20 40 60 80 100

Te
m

p
er

at
u

re
 (°

C
)

Time (s)

Figure 6 shows the results of a manual tuning of the gain. In the top left the proportional gain is
reduced from 0.032 to 0.008. As this happens the average error increases, but the amount of
oscillation in the error decreases. Low oscillation is desirable as it implies stability of the
controller. In the top right the proportional gain is held at 0.008 as the integral gain is increased.
As the gain is increased, the magnitude of the error decreases. At an integral gain of 0.0008,
the error only decreases slightly from the error for a gain of 0.0004. This indicates that a further
increase is likely to introduce oscillations again. In the bottom, the derivative gain is slowly
increased. This results in a slightly worse magnitude in the error. Based on this quick tuning the
gains should be set at PROPORTIONAL_GAIN = 0.008, INTEGRAL_GAIN = 0.0008, and
DIFFERENTIAL_GAIN = 0. This results in an average temperature error of 2.8 °C or an average

relative error magnitude of 3 %. The resulting furnace temperature compared to the target
temperature is shown in Figure 7.

Figure 6: Manual tuning of the gains for Example 6

0

5

10

15

20

25

30

35

0 20 40 60 80 100

Te
m

p
er

at
u

re
 E

rr
o

r
(°

C
)

Time (s)

Vary Proportional Gain, Integral and Differential

Fixed at 0

Kp=0.032

Kp=0.016

Kp=0.008

-5

0

5

10

15

20

25

30

35

0 20 40 60 80 100

Te
m

p
er

at
u

re
 E

rr
o

r
(°

C
)

Time (s)

Vary Integral Gain, Proportional Fixed at 0.008

and Differential Fixed at 0

Ki=0.0002

Ki=0.0004

Ki=0.0008

-5

0

5

10

15

20

0 20 40 60 80 100

Te
m

p
er

at
u

re
 E

rr
o

r
(°

C
)

Time (s)

Vary Differential Gain, Proportional Fixed at 0.008

and Integral Fixed at 0.0008

Kd=0.0000

Kd=0.0001

Kd=0.0002

Figure 7: Target vs. FDS predicted furnace temperature for Example 6

Tips for Designing Inputs

Below are some tips for creating CTRL and DEVC inputs for FDS:

• Test your inputs with simplified input files. Reduce the size of the computational domain
and/or the number of grid cells to reduce runtimes. Further reduce runtimes by changing
DEVC SETPOINTs or DEVC QUANTITYs to be faster. For example if a
TEMPERATURE DEVC has a SETPOINT of 200, lower it or change it from
TEMPERATURE to TIME and make the SETPOINT a small value. Make sure that the
inputs have the desired results before running the full simulations. Changing inputs to
TIME makes it easier to use Smokeview to evaluate control logic.

• Add DEVC and SLCF outputs to visualize control logic. For example adding a DEVC to
measure the volume flow at the exhaust vent would help verify that the logic is correct.

• If you are developing a complex set of inputs, try and break the problem up into smaller
components that then get joined together. Test the small groups individually before
combining them and testing as a whole.

• Sketch logic diagrams for your system to help guide the development of inputs.

• Experiment with different approaches for a complex system.

0

50

100

150

200

250

300

0 20 40 60 80 100

Fu
rn

ac
e

Te
m

p
er

at
u

re
 (°

C
)

Time (s)

Target

FDS

