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ABSTRACT

This note discusses some of the physics and associated numerical algorithms used by Smokeview to
visualize smoke and ϐire. Realistic visualization methods are important for applications where one
wishes to observe qualitative effects of ϐire and smoke rather than quantitative characteristics such as
temperature or velocity. Approximations and simpliϐications are required to display smoke and ϐire at
interactive frame rates. The primary approximation is to take advantage of the low albedo character of
smoke allowing one to either simplify or eliminate scattering terms in the radiative transport equation
used to visualize smoke and ϐire.

INTRODUCTION

This note discusses some of the physics and associated numerical algorithms used by Smokeview [1,
2] to visualize smoke and ϐire. Smoke color and opacity are visualized using quantitative physics-
basedmethods. Flame color is visualized using an arbitrary user-speciϐied color palette where color is
mapped to gas temperature. Smoke opacity is visualized using Beer’s law relating smoke density and
opacity.

Realistic visualization of ϐire is important for applications where one wishes to observe qualitative ef-
fects of ϐire and smoke rather than determine quantitative data such as temperature or velocity. This
would be the case for a ϐire ϐighter using a computer based ϐire ϐighting simulator. Realistic visualiza-
tion methods, however, complement but do not replace other more traditional visualization methods
such as 2D contouring or 3D iso-surfacing which are better suited for quantitatively analyzing data.

Complete methods for visualizing smoke and ϐire data taking into account interactions between light
and smoke require the solution of the radiation transport equation (RTE) [3] also called the volume
rendering equation in the visualization literature. [4] This equation models how light is affected after
interacting with smoke, a participating medium. In particular, Smokeview uses the RTE to account for
extinction (absorption plus out-scattering) by the smoke and emission from the ϐire.

The form of the RTE used by Smokeview to model smoke and ϐire appearance is identical to that used
by the Fire Dynamics Simulator (FDS) to model radiative heat transfer. Smokeview uses an extinction
coefϐicient appropriate for visible lightwhile FDSuse one appropriate for infraredwavelengths of light.
With the proper extinction coefϐicient, however, Smokeview can also view smoke at otherwavelengths,



simulating a thermal imager, for example. Smokeviewsolves theRTEassumingagraygas environment.
This is the default solutionmethod for FDS. One other important difference is that Smokeview requires
a solution at only one point at a time (any arbitrary point though), the observer’s viewpoint, while
FDS requires a radiation ϐield, a solution at all points within the solution domain. Approximations are
required in order to display smoke and ϐire at interactive frame rates. The primary approximation is
to take advantage of the low albedo character of smoke allowing one to either simplify or eliminate
scattering terms in the RTE.

A slice rendering method for solving the RTE, splits the integration path at grid planes within a 3D
mesh. A series of partially transparent slices are drawn through the data where each slice is approx-
imately perpendicular to the line of sight. These partially transparent slice planes are then drawn
individually and combined by the video hardware to form one image. The spacing of data within one
plane and the spacing between planes are parameters that can be speciϐied by the user in order to
speed up the visualization.

As the separation distance between slice planes becomes smaller, the computed opacity values are
subject to increased round off error due to ϐinite precision arithmetic. In fact, if these planes are sufϐi-
ciently close, the computed opacities truncate to zero. In this situation other techniques for visualizing
smoke such as volume rendering methods are required.

RADIATION TRANSPORT EQUATION

The model used here to visualize smoke is the radiation transport equation (RTE) [3]. This equation
uses radiance to represent smoke appearance. Radiance has units of Watts per square meter per unit
solid angle W/(sr ⋅m2). The solid angle accounts for the fact that a light source appears brighter if
it emits a given amount of light through a smaller cross-sectional area. Similarly the radiance of a
light source does not depend on distance from the observer (unless a participating medium is present
to absorb or scatter light) since any increase in distance that would reduce radiance is offset by the
light source’s reduced cross sectional area. The radiation transport equation discussed in this section
models the change in radiance due to these factors.

The radiation transport equation is used to calculate radiance due to one or more light sources within
a region possibly containing a participating medium such as smoke [3]. The change in radiance along
a ray with direction 𝜔 at any one instant and wavelength may be expressed using
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(1)

where 𝐶(𝑥, 𝜔) represents the radiance at 𝑥 along a direction 𝜔. As illustrated in Figure 1, the right
hand side of equation (1) is split into four components accounting for absorption, in and out scattering
and emission where 𝜎௔(𝑥) is the absorption coefϐicient, 𝜎௦(𝑥) is the scattering coefϐicient, 𝐶௘(𝑥, 𝜔)
is the radiance emitted at 𝑥 along a direction 𝜔 and 𝑝(𝑥, 𝜔, 𝜔ᇱ) is the fraction of light moving along
direction 𝜔ᇱ scattered along direction 𝜔. Absorption and out-scattering cause radiance to decrease
while emission and in-scattering cause radiance to increase. The radiance terms 𝐶, 𝐶௘ and 𝐶௜ have
units of W/(m2 ⋅ sr). The coefϐicients 𝜎௔ and 𝜎௦ have units of 1/m and specify the time and location
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dependent change per unit length to the radiance term to which they are applied.
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Figure 1: Diagram illustrating components of the radiation transport equation. Absorption and out-
scattering terms decrease radiance. Emission and in-scattering terms increase radiance.

Approximating the Radiation Transport Equation

The RTE may be simpliϐied by ignoring the in-scattering term and combining out-scattering and ab-
sorption coefϐicients. The Beer-Lambert law results if the emission term is also neglected.

Equation (1) is then approximated by neglecting the integral term and using 𝜎௧(𝑥) = 𝜎௔(𝑥) + 𝜎௦(𝑥) to
obtain

d𝐶
d𝑥 (𝑥) = −𝜎௧(𝑥)𝐶(𝑥) + 𝜎௔(𝑥)𝐶௘(𝑥) (2)
𝐶(𝑥଴) = 𝐶଴ (3)

This equation has solution

𝐶(𝑥ே) = 𝜏(𝑥଴, 𝑥ே)𝐶଴ +න
௫ಿ

௫బ
𝜏(𝑥, 𝑥ே)𝜎௔(𝑥)𝐶௘(𝑥) d𝑥 (4)

where 𝜏(𝑎, 𝑏) representing the optical depth between 𝑎 and 𝑏 is given by

𝜏(𝑎, 𝑏) = expቆ−න
௕

௔
𝜎௧(𝑠) d𝑠ቇ (5)

If the emission term is neglected, 𝜎௧(𝑥) = 𝜎௧ is assumed to be constant and 𝐿 is the path length then
this equation simpliϐies to

𝐶(𝑥ே)
𝐶଴

= exp(−𝜎௧𝐿) (6)

which is the Beer-Lambert law.

Discretizing the Radiation Transport Equation
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The approximate RTE solution given in equation (4) is discretized by converting integrals into a sum.
Figure 2 illustrates the terms used to perform these discretizations. The integration path is split into𝑁
parts each with length Δ𝑥 = (𝑥ே − 𝑥଴)/𝑁. The coordinate system is set up so that the initial radiance,
𝐶଴, is located at 𝑥଴, most distant from the observer and the ϐinal radiance, 𝐶ே , is located at 𝑥ே closest
to the observer.

C0 CNCi+1Ci

xNx0 xi

i+1i

xi+1

x

observerbackground

x

212 CCC 

x0 xND

,C=2C1+C2

x0 D D xN

,C1 ,C2

Figure 2: Setup for discretizing the equations used to model radiance within a column of 3D smoke
data. The transparency across the interval from 𝑥௜ to 𝑥௜ାଵ is 𝜏௜ . The transparency across the intervals
from 𝑥௜ to the observer is the product of individual transparencies or 𝜏௜𝜏௜ାଵ⋯𝜏ேିଵ
.

The optical depth, 𝜏(𝑎, 𝑏), deϐined in equation (5) is discretized using a sum after deϐining sample
points 𝑠௝ = 𝑥଴ + 𝑗Δ𝑠 for 𝑗 = 0 to𝑁 with spacing Δ𝑠 = (𝑥ே − 𝑥଴)/𝑁 to obtain

𝜏ேିଵ௜ = 𝜏(𝑥௜ , 𝑥ே) = expቆ−න
௫ಿ

௫೔
𝜎௧(𝑠) d𝑠ቇ ≈ expቌ−

ேିଵ
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𝜎௧(𝑠௝)Δ𝑠ቍ (7)

=
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ேିଵ

ෑ
௝ୀ௜

𝜏௝ (8)

where 𝜏௝ = exp ൫−𝜎௧(𝑠௝)Δ𝑠൯ represents the transparency over one discretization interval. For 𝑖 =
𝑁 − 1 to 0, the optical depth 𝜏ேିଵ௜ may be computed recursively using

𝜏ேିଵ௜ = 𝜏ேିଵ௜ାଵ 𝜏௜ (9)

where the recursion is initiated with 𝜏ேିଵே = 1. Substituting 1 − 𝛼ேିଵ௜ = 𝜏ேିଵ௜ and 1 − 𝛼௜ = 𝜏௜ into
equation (9) gives

1 − 𝛼ேିଵ௜ = (1 − 𝛼ேିଵ௜ାଵ )(1 − 𝛼௜) = 1 − 𝛼ேିଵ௜ାଵ − 𝛼௜ + 𝛼ேିଵ௜ାଵ 𝛼௜ (10)

which simpliϐies to

𝛼ேିଵ௜ = 𝛼ேିଵ௜ାଵ + (1 − 𝛼ேିଵ௜ାଵ )𝛼௜ (11)

Similarly, the radiance given by the RTE solution 𝐶(𝑥ே) in equation (4) may be discretized to obtain
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𝐶ே = 𝜏ேିଵ଴ 𝐶଴ +
ேିଵ

෍
௜ୀ଴

𝜏ேିଵ௜ 𝜎௔,௜ 𝐶௘,௜ Δ𝑥 (12)

What is seen on the screen is the term 𝐶ே . If the expression 𝜎௔,௜𝐶௘,௜Δ𝑥 in equation (12) is interpreted
as the emitted color of the ϐire or heated gas at a location 𝑖 and 𝐶଴ is interpreted as the color of the light
source behind the smoke, then equation (12) restated in words gives the observed color as a weighted
average of source and emitted colors where each weight is the optical depth from the observer to
the corresponding emitted color location. These emitted colors can be determined from a blackbody
temperature curve or from a colormap meant to show variations in temperature in terms of color.

IMPLEMENTATION

The algorithm described here for visualizing smoke and ϐire realistically consists of placing planes
within the solution domain and determining opacity and color at various locationswithin these planes
using data generated by a ϐire model such as FDS. The video card then is used when drawing smoke-
view to form a solution by combining colors and opacities in the currently drawn plane with those al-
ready accumulated in a screen buffer. The original Smokeview algorithm placed planes exactly where
data was recorded by FDS, either parallel to the XY, XZ or YZ axes planes or diagonally to two of these
planes. The algorithm described below places planes in more general locations. Interpolation is then
used within a 3D data set to obtain data values at locations required by the algorithm. This increased
ϐlexibility allows one to more easily reduce the amount of data accessed to draw smoke. Planes are
placed perpendicular to the line of sight and are equally spaced though not necessarily at the same
spacing as used by the underlying FDS grid. This results in faster visualizations with the caveat that
reduced data may result in less realistic visualizations. A brief overview of the algorithm is given be-
low.

1. Given spacing parameters parallel and perpendicular to the line of sight, place equally spaced
planes through the data, each plane oriented perpendicular to the line of sight. This is illustrated
in Figure 3. Plane locations change as the scene is moved. By placing planes only where smoke
is located, as illustrated in Figure 4, faster visualizations result. If the graphics processing unit
(GPU) is used to visualize smoke thendata is passed to theGPUalongwith vertices of the polygon
of the intersected plane. If the central processing unit (CPU) is used to visualize smoke then the
polygon needs to be triangulated (the GPU triangulates data within any triangle it draws).

2. Each data plane must be triangulated when smoke is drawn by the CPU. The data plane, repre-
sented as a polygon, is divided into a series of equally sized triangles (except for those triangles
that border the polygon edge). To do this, a 2D coordinate system is constructed for the planar
polygon. As illustrated in Figure 5, let u be a vector corresponding to the longest polygonal side.
Let v be a vector corresponding to the side clockwise (from the point of view of the observer)
from u. Orthogonal unit vectors, s and t, in the plane of the polygon are formed using

s = u/||u||,
t = (s × v̂) × v̂
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Figure 3: Planes are placed within the entire solution domain so that they are equally spaced and are
oriented perpendicular to the line of sight. In this example, the solution domain is rotated and the
number of planes is reduced to make themmore visible.

Figure 4: To improve visualization performance, especially at the beginning of the simulation when a
ϐire is typically small, planes are placed only where smoke and ϐire is located resulting in faster visual-
izations (since data does not need to be obtained or drawn where it would not be visible).
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where v̂ = v/||v||.
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a) intersection of a plane and a solution mesh b) triangulated polygon

Figure 5: Intersection of a plane perpendicular to the line of sight and the solution domain. This results
in a polygonwhich is triangulated using a 2D coordinate system represented by vectors s and t located
in the plane of this polygon. Similar polygons uniformly spaced and perpendicular to the line of site
are also generated and triangulated whenever the scene is moved.

3. For a spacing parameter Δ, the polygon is then triangulated in terms of vectors s and t by ϐirst
forming vertices 𝑣௜௝ = 𝑥଴ + 𝑖s + 𝑗t for 𝑖 and 𝑗 so that 𝑣௜௝ covers the polygon (and the region
just next to it) and next forming triangles (𝑣௜௝ , 𝑣௜ାଵ,௝ , 𝑣௜ାଵ,௝ାଵ), (𝑣௜௝ , 𝑣௜ାଵ,௝ାଵ, 𝑣௜,௝ାଵ) from these
vertices. Triangles with all vertices outside the polygon are neglected. If one or two vertices are
outside the polygon they are moved to the closest point on the polygon.

The slice orientation is chosen to be the one most perpendicular to the viewer’s line of sight. The
opacity at each vertex is computed using the distance between adjacent planes and soot density data
computed by the ϐire model. Opacities are adjusted if the distance between planes is different than the
spacing parameter used to compute the original opacity. Opacity data is computed and compressed
using run length encoding as a preprocessing step and decompressed as each frame is displayed.

Summarizing, a slice rendering algorithm for visualizing smoke consists of splitting the RTE across
individual slice planes within a single mesh. Figure 6 shows an example illustrating a various number
of slice planes used to visualize smoke and ϐire. The 3D computational domain is partitioned into a
series of 2D slices. TheRTE is then solvedon each slice. Each slice solution only accounts for conditions
between adjacent slices. The individual partially transparent slice solutions are then combined using
video hardware to form the ϐinal image. Slices become more transparent as the come closer together.
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Problems can then occur resulting in poor visualizations because of numerical round off error. In this
case, different solution techniques are required such as volume rendering which integrates the entire
RTE at once rather than one slice at a time.

Computing Opacity

Consider a ray traveling from the background to the observer through intervening smoke. Light is
absorbedor scatteredby the smoke as the raypasses througheach slice plane. Emission from the ϐlame
or hot smoke is implemented by coloring the smoke. Scattering is implemented using the total mass
extinction coefϐicient. Light losses are assumed tobe frombothabsorptionand scattering. Obscuration
or opacity is computed along each ray one grid plane at a time, using the Beer-Lambert law as follows.
The 𝛼 = 1 − 𝜏 values are pre-computed by FDS using the Beer-Lambert law [3]. The 𝛼 parameter
represents an opacity, 0.0, for completely transparent, and 1.0 for completely opaque and is given by

𝛼 = 1 − exp(−𝜎௧Δ𝑥) (13)

for the view direction down the 𝑥 axis where Δ𝑥 is the distance between two grid planes and 𝜎௧ is the
total mass extinction coefϐicient. The 𝛼 parameter in equation (13) is used by Smokeview to blend the
smoke plane currently being drawnwith the background. For a different plane spacing, Δ𝑥̂, the opacity
is adjusted using 𝛼̂ = 1 − (1 − 𝛼)୼௫̂/୼௫ .

Computing Color

Smokeview visualizes smoke and ϐire by drawing a series of triangles in equally spaced parallel planes.
Color for these triangles are assigned by mapping temperature or HRRPUV (heat release per unit vol-
ume) values to color such as with a color map illustrated in Figure 7. Transparency for these triangles
is assigned using soot density, the greater the soot density, the more opaque the triangle.

The example color map in Figure 7 is split into two parts. The left half is used for coloring non-
burning regions, the right half is used for coloring burning regions. An HRRPUV cutoff value denoted
hrrpuvcutoff is used to distinguish these two regions. If an HRRPUV value is below the cutoff, smoke is
drawn using colors from the left half of the color map, while if an HRRPUV value is greater than the
cutoff, ϐire is drawn using colors from the right half of the color map. The color map is deϐined as a
table of 256 red, green, blue color triplets. A formula giving a color index for a given HRRPUV value is
given by

color index = ቐ
127 hrr

hrrcutoff
0 ≤ hrr ≤ hrrcutoff

127 + 128 hrrିhrrcutoff
hrrmaxିhrrcutoff

hrrcutoff ≤ hrr ≤ hrrmax
(14)

A second method for coloring ϐire is illustrated in Figure 8. Instead of blending colors found along the
line of sight it uses the color corresponding to themaximum temperature found along that path. This is
implemented in Smokeview using a feature of the open graphics library (OpenGL)[5] that replaces the
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a) 6 planes 9 planes

a) 12 planes 15 planes

Figure 6: Four images showing increasing number of planes used to visualize smoke and ϐire.

Figure 7: Example colormap used for converting temperature or HRRPUV values to color.
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color in the background only if the currently drawn color has a greater value (in terms of the red, green
or blue color components). Though the visualizations look more realistic it is not as ϐlexible since the
background has to be black (zero red, green blue color values) in order for the maximum replacement
feature to work.

Figure 8: The image on the left was generated by blending colors found along each line of sight us-
ing opacities derived from smoke density. The image on the right was generated by using the color
corresponding to the maximum temperature found along each line of sight.

SUMMARY

This note describes how Smokeview uses a simpliϐied form of the radiative transport equation to dis-
play smoke and ϐire. This equation is solved using either the CPU or the GPU along with the video
card by drawing a series of slices. Each slice is triangulated and drawn using opacities derived from
Beer’s law a simpliϐied form of the radiative transport equation. The slices are colored using color
maps. These algorithms may be improved in several ways. The integration of the radiative transport
equation can have problems due to the limited numerical precision (8 bits) used to represent smoke
opacity. One solution to this as illustrated in Figure 8 is to use choose maximum values rather than
blending values. A better solution is to use data with more precision to perform the integration. Slice
coloring may be made more quantitative by relating temperature to color using physics based rather
than an assumed color map.
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