Visualizing Smoke and Fire

Goal: Improve quality and efficiency of methods used to visualize smoke and fire

Time: 0.0

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce Glenn P. Forney Fire and Evacuation Modeling Technical Conference October 3, 2018

Overview

- Smoke/Fire Visualization Examples
- Brief overview of new visualization algorithms
- Exploit the GPU (video card) to perform computations more efficiently
- Making movies using ffmpeg

100x100x60 400 meshes 800+ time frames 240 million grid cells 192 GB data

Challenges

- •Memory
- Computation
- Data load time

Time sinks

- FDS multiplications
- Smokeview drawing triangles

Solution Approaches

•compress data

- •use the video card (GPU)
- load data in the background (while it is being displayed)
- •Display only data that is visible

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Smoke Visualization Methods

Frame: 150	
Time: 30.0	Frame rate:21.1

NIST Smokeview 4.0 Alpha - Mar 5 2003

Frame: 150 Time: 30.0

50

Frame rate: 8.4

Technology Administration, U.S. Department of Commerce

2d contours

Time: 12.0

realistic/3D smoke

Frame rate: 4.8

Volume Rendering Equation – Radiation Transport Equation

Technology Administration, U.S. Department of Commerce

Orient planes to be perpendicular to line of sight

 ΔX

3D Slices

(like 3d smoke/fire uses 3d interpolation)

• FDS input file &DUMP NFRAMES=100, DT_SL3D=0.1 / &SLCF XB=0.0,1.6,0.0,1.6,0.0,3.2, QUANTITY='TEMPERATURE' /

Slice motion -
rotation center
×: 0.967901
y: 0.8
z: 0.955208
normal
az: 0.0
elev: 152.451
show data triangle outline triangulation plane normal

keyboard shortcut: w

3D Slices

Overview of Smoke/Fire Visualization Method

- Intersect a series of equally spaced planes with each mesh
- Generate triangles in each plane
- Obtain smoke and fire data at each triangle vertex
- Draw each triangle using smoke and fire data to generate opacity and color

Assign color and opacity to each vertex

Overview of Smoke/Fire Visualization Method

NIST National Institute of Technology Administrat

Time: 0.0

Smoke/Fire Visualization Using 'New' Triangulation Method

Slice rendered —	
 Load options + Visualization type Original Test O diagnostic 	
Visualization options (original) +	
Visualization options (test) — resolution parallel (m) 0.003119 perpendicular/parallel 1.0	
☐ fast interpolation ☐ diagnostic	

NIST National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Compress Data – Run Length Encoding

- Replace four byte soot density with one byte opacity Compress using "run length encoding"
- Replace repeated runs with a count and a data value

 This step is performed automatically by FDS when outputting 3D smoke files

Fire Visualization Using Slice files – max blending method

 Replace color only if it is 'greater' than current color in screen buffer FDS input file &DUMP NFRAMES=1000, DT_SL3D=0.1 / &SLCF XB=.... QUANTITY='TEMPERATURE' /

Smokeview

Select 'slice fire' options

• Select 'fire 3' color bar

Max Blending Method - Examples

Technology Administration, U.S. Department of Commerce

Compress Data – Smokezip

- Use Smokezip for 3D slice files (max blending example) Smokezip uses the ZLIB library for compression <u>https://zlib.net</u>
- Open case in smokeview and define min and max slice temperature
- Save a .ini file
- Run smokezip

smokezip -t n casename

Set n simultaneous processes you want to run

Max Blending Example

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

- Download ffmpeg and ffmplay from: <u>https://www.ffmpeg.org/download.html</u>
- Smokeview adds a movie dialog box if it finds ffmpeg in your path

Render —	
Start rendering	
Stop rendering	
□ File name/type + □	
Show: Current	
size/type —	
C 320×240	
C 640×480	
C 1024×768 (current)	
C 2048×1536 (2 × current)	
360° 1024×512	
multiplier: 2	
360° height 512 🚔	
Clipping region +	

Movie Voverwr	ite movie
	Render normal
	Make movie
	Play movie
Movie prefix: thouse5	
Movie type: ¬	
🔿 avi	
	⊙ mp4
	C WMV
	○ mov
☑ Quicktime compatibility	
Frame rate 30 🚔	
Bit rate (Kt	o/s) 5000

Normal view – one screen

 Objects between the eye and the screen are projected onto the screen

National Institute of Standards and Technology

Technology Administration, U.S. Department of Commerce

360 rendering – use 26 views to 'flatten' the sphere

360 rendering – use 26 views to 'flatten' the sphere

NIST National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Future Possibilities

Directional light source

- Use color based on flame temperature
- Improve integration of the RTE
- Make better use of the GPU

Thank You and Questions

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce