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ABSTRACT

Thedistributionof passengerswaitingon trainplatforms influences theboarding andalight-

ing times of trains, hence it is one of the limiting factors of the performance of train stations.

We introduce a cellular automaton for modeling the pedestrians’ waiting behavior at plat-

forms. Different factors as the geometry and the positions of other waiting pedestrians are

taken into account. To assess the model, simulations on a excerpt of a real life platform in

Bern, Switzerland were performed. The results show good agreement with the observa-

tions of previously conducted field studies.

INTRODUCTION

One of the bottlenecks influencing railway stations’ performance is the distribution ofwait-

ing pedestrians on platforms. Firstly, waiting pedestrians who come to a halt or slow down

obstruct other pedestrians in theirmovement. Secondly, the dwell times of trains highly de-

pend on the pedestrians’ distribution on the platform. A more uniform distribution leads

to faster boarding times, as the train doors will be used more evenly [14, 5].

Simulations are one tool to investigate and analyze the influence of pedestrian’s behavior

on platforms. Multiple models exist to describe the movement in a simplified way for mov-

ing pedestrians, e.g., by different forces acting on the pedestrians or collision avoidance [6,

2, 15]. An important component in these models is the desired movement direction, to-

wards which pedestrians aim. However due to the presence of other pedestrians and ob-

stacles their direction is deflected. In evacuation or boarding and alighting processes, the

desired movement is towards a specific physical goal, e.g., the emergency exit, or the train

door. Contrary, in waiting processes, the movement is towards an indistinct goal, which

mostly may satisfy personal preferences or can be assumed to be randomly chosen.

As already mentioned, the dwell times of trains is an indicator of the performance of

railway transport facilities. In [11], data from a camera system at multiple train stations
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in Switzerland is used to analyze the pedestrians’ movement in more detail. They focus

primarily on identifying hot spots of waiting pedestrians, reporting that pedestrians pre-

fer to wait close to immovable objects, e.g., walls, railings around stairs, allowing them to

lean against. Qualitativedescriptionsof thepassengers’ longitudinal distributionhavebeen

given by studies focusing on the dwell times of trains [5, 16, 10, 14]. These studies observed

passengers’ clustering around entrances and further platform infrastructure as seats, shel-

ters, and vending machines. More experienced travelers also take the train position at the

departing station or the position of less crowded coaches into account when choosing a

waiting position. However, no further notions of the distribution of the passengers between

the tracks were reported.

Recently, the investigation of inflow processes with experiments under laboratory con-

ditions gained more attention. In [12], different hypotheses of the inflow process are com-

pared with experimental data. Experiments focusing on the inflow to a confined were con-

ducted in [4], where a theoretical description of the process is derived. These works em-

phasized the attractive or repulsive influences of different parts the geometry. Pedestrian

tend to prefer positions close to the boundary but try to avoid positions in which they ex-

pect more pedestrians to pass.

In [3] and [7], the influence ofwaiting/standingpedestrians on the flowof passing pedes-

trians in train stations were investigated with simulations. In these cases, the waiting posi-

tionwas randomly assigned in designatedwaiting areas, and thewaiting pedestrianswould

not move. An approach to model the passengers’ distribution on a metro platform with a

cost function approach is discussed in [17]. Different influence factors as he distance to a

particular waiting area, density, length of thewaiting area are considered in the introduced

cost function.

In this paper, we develop a cellular automaton model to describe the movement of wait-

ing pedestrians on a platform. We define waiting pedestrians, as pedestrians who enter a

specific region on a platform, until the awaited event is triggered, e.g., the train’s arrival.

MODEL

The movement of pedestrians in waiting situations depends on the individual’s personal

preferences. Hence, we propose a heuristic approach based on cellular automata [1, 8]. In

this approach, the space is discretized into cells of 0.5×0.5m2, which can be occupied by

exactly one person at a time. In each of the compute steps, the pedestrians evaluate their

surroundings, deciding for a moving direction. This decision is made by evaluating under-

lying floor fields representing the potential as waiting position. The higher the potential,

the more likely it is that the pedestrian moves in that direction.

A pedestrian k, located in cell (i, j) can move to one of the neighboring cells n of a von

Neumann neighborhood N with a given transition probability P k
n , as in Fig. 1. To deter-

mine the probability for each of the neighboring cells multiple floor fields are combined.

On one hand, the static floor field S gives an indicator of how preferable a waiting position

is, based on influences that will not change during the simulation, for example the distance

to walls. On the other hand, the repulsive field R penalizes waiting positions too close to

other waiting pedestrians and is updated at each time step, as the pedestrians change their
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positions. Additionally, the weight distance fieldW rewards waiting positions close to the

current position.

Only the visible area V k is considered for the computation of the transition probabilities,

since pedestrians do not have a global knowledge of the geometry. To identify which cells

have an impact on the transition probability of a specific neighbor, the space is divided

into Voronoi regions Cn according to the neighbor cells n ∈ N . The visible area and the

corresponding Voronoi regions are depicted in Fig. 2, where the union of all colored areas

is the visible area. The different colors show which regions impact the probability of a

specific neighbor.
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P k
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(i+1,j)

P k
(i,j−1) P k
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0

0

0
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FIGURE 1: Allowed movement direc-

tion of pedestrian.

FIGURE 2: Visibility polygon and the Voronoi re-

gions for the neighboring cells. Colors

mark the influence areas of the corre-

sponding neighboring cell from Fig. 1.

Asmultiple studies report, pedestrians tend towait close to the platform’s entrances. We

assume that potential waiting positions close to the current position are preferred to those

further away. Hence, with

W k
i.j = 1−

[
1 + exp

−aw
(
dki,j−bw

)]−1

, (1)

points of interest with a smaller distance dk to pedestrian kwill be rewarded. We use a Sig-

moid function tomap distances to potentials , with the parameters aw, bw ∈ R+ controlling

the steepness and cut-off radius of a Sigmoid function.

By combining the floor fields, the transition probability of pedestrian k moving to cell

n ∈ N is given by

P k
n = M · max

i,j∈V k∩Cn

(
W k

i,j

[
Si,j ·Rk

i,j

])
, (2)

where M is a normalization factor such that
∑

n∈N P k
n = 1. The floor fields used will be

described in detail in the following subsections, together with the algorithm for describing

the movement of waiting pedestrians.
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Static floor field S

The influences considered inS are the distances to the platform entrances, boundaries, e.g.,

walls and obstacles, and the platform edge, where the awaited train arrives. These influ-

ences donot changeover time, as they are only affectedby structural features, as fixedwalls,

door, and obstacles. Pedestrians will try to minimize their distance to regions of interest

given by B, T . Moreover, regions close to doors are less preferable as more pedestrians

are expected to pass in such regions, this repulsion is represented in E. To model differ-

ent behavior patterns, the fields are scaled by individual weights wb, wt ∈ R+. With these

assumptions, the potential fields are defined as

Ei,j =
[
1 + exp−ae(de−be)

]−1
, (3)

Bi,j = 1−
[
1 + exp−ab(db−bb)

]−1
, (4)

Ti,j = 1−
[
1 + exp−at(dt−bt)

]−1
, (5)

wherede, db, dt are thedistances to the closest entrance, closestwall, andplatformedge, the

train will arrive, respectively. The distances are computed with a fast marching approach

[13], hence taking detours due to corners or obstacles into account. With the parameters

ae, be, ab, bb, at, bt ∈ R+ the influence area can be controlled.

The resulting static floor field S is defined as

Si,j = Ei,j · [wb ·Bi,j + wt · Ti,j ] . (6)

Figs. 3a to 3c show the different potential fields on an excerpt from a platform in Bern,

Switzerland. A detailed description of the geometry is given in . Fig. 3d displays the result-

ing static floor field with Eq. 6.

(A) E. (B) B.

(C) T. (D) S.

FIGURE 3: Potential of the static influences. More preferablewaiting positions are indicated

with higher numbers.
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Repulsive floor field

As pedestrians prefer waiting positions with a certain distance to other waiting or moving

pedestrians the repulsive floor fieldR is used to penalize areas close to other pedestrians.

R is computed in each time step individually for each pedestrian k by

Rk
i,j =

[
1 + exp

−ar
(
dki,j−br

)]−1

, (7)

where dk denotes the Euclidean distance to the closest pedestrian. We introduce a cut-off

radius to exclude big distances, which can be controlled by ar, br ∈ R+. Fig. 4b shows the

resulting floor field. Combining all influence factors as in Eq. 2 yields a potential field as in

Fig. 4f.

(A) Sample geometry with pedestrian distribu-

tion.

(B)Rk

(C) S ·Rk . (D)W k .

(E)W k ·
(
S ·Rk

)
. (F)W k ·

(
S ·Rk

)
∈ V .

FIGURE 4: The different combinations of floor fields based on the pedestrian distribution

on the top. All floor fields are computed for the pedestrian k highlighted in red.

A higher number indicates a more preferable waiting position.

Algorithm

The algorithm for determining the pedestrians’ movements at a train station is given in 1.

It may happen, that multiple pedestrians head towards the same cell, this conflict is solved

as described in [1] by using relative probabilities. If one of the pedestrians is already in

the target cells, no movement is necessary. Otherwise, one of the pedestrians is chosen

randomly based on the relative probabilities. This pedestrian moves towards the target

cell, and the others stay at their positions.
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Algorithm 1 Simulate waiting pedestrians on platform.

Compute S according to Eq. 6

whilemaximum of compute steps not reached do

for all pedestrians k on the platform do

Compute visible area V k from current position;

Compute Voronoi regions C of pedestrian and its neighbors;

ComputeW k according to Eq. 1;

ComputeRk according to Eq. 7;

Compute P k
n according to Eq. 2;

Determine next step based on P;

end for

Solve conflicts;

Move pedestrians according to their next step;

end while

RESULTS

With the model we simulate the waiting behaviors of passengers on an excerpt from a real

platform in Bern (track 3/4), Switzerland. The excerpt consists of a stairway (left side), a

ramp (middle), and a smoking area with recycling bins and ashtrays (right), as displayed

in Fig. 5. Entrances/exits to the platform are located at the right side of the stairway and

ramp, highlightedby red lines. Furthermore, the platformedgeswhere trainswill arrive are

displayed by green lines. As this excerpt is only about 60m long, we extended the geometry

for the simulations by 50m in both directions, such that pedestrian canmove freelywithout

being obstructed by the boundary. The original geometry contains multiple pillars in the

top half of the platform, close to the ramp and between ramp and smoking area. We had

to remove some of these pillars in our simulations, as their diameters were too small to be

adequately handled by the library used to compute the visible area.

FIGURE 5: Excerpt of the platform in Bern, Switzerland used for the simulations. White ar-

eas mark obstacles as stairway (left), ramp (middle), and recycle bins and ash

trays (right). Red lines indicate the entrances/exits of the platform, green lines

are the platform edges.

6 of 11



For simulating different initial situations and waiting times, multiple simulations have

been conducted varying different input parameters, as shown in Tab. 1. We decided for

short time intervals between the trains, e.g., 3min, 5min, and 10min to simulate peak traf-

fic times. Themaximum number of pedestrians in the simulations varies between 200, 300,
and 500. The number of pedestrians initially distributed on the platform depends on the

maximal number pedestrians in the simulation. In our simulations either 25% or 50% of

the maximal number of pedestrians are already distributed on the platform. Other pedes-

trians enter the platform throughone of the entranceswith a constant flow. For pedestrians

entering the platform, a goal, bottom, or top platform edge, based on a weighted random

selection is chosen.

TABLE 1: Used initial situations for the simulation

time max. agents initial agents prob. of ped. for bottom track

3min, 5min, 10min 200, 300, 500 25%, 50% 0%, 25%, 50%, 75%

In several field observations [5, 16, 10, 14] on different train stations, the positions of

entrances were emphasized as the the most important factor to the pedestrian longitudi-

nal distributions on platforms. Clustering of pedestrians usually occurs close to platform

entries and exits, leading to a non-uniform distribution and, in some cases, leaves parts of

the platform empty, which are further away from entrances. The same behavior can be ob-

served in our model. Fig. 6 shows the distribution of the waiting pedestrians at the end of

the simulation. One can see that areas close to the entrances are preferred compared to

further distanced positions. Furthermore, the preference of waiting positions close to plat-

form infrastructure can be observed, as pedestrians’ clustering close to the smoking area

on the right side occurs. Also the preference of the platform side, where a train is expected

to arrive, can be observed. In Fig. 6amost pedestrianswait for the train on the top platform

edge, which is also reflected in the pedestrians distribution. As the number of pedestrians

waiting for a train on the top decreases, the distribution shows a shift towards the bottom

track Figs. 6b to 6c.

(A) Time: 3min, max. agents: 300, initial agents: 50%, prob. for bottom track: 25%.
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(B) Time: 3min, max. agents: 300, initial agents: 50%, prob. for bottom track: 50%.

(C) Time: 3min, max. agents: 300, initial agents: 50%, prob. for bottom track: 75%.

FIGURE 6: Comparison of pedestrian distributions on platform at the end of the simulation.

Küpper and Seyfried [11] introduced the measure occupation of space in their work,

which allows to identify hot spots where passengers tend to wait for a train. For the mea-

sure the space is divided into regular cells. The usage of each cell is increased by one every

time it is occupied by a passenger. The occupation of a cell is normalised with the number

of frames. They analyzed the afternoon peak traffic times between 3:30 pm and 6:00 pm

and computed the corresponding occupation of space, shown in Fig. 7a. We use the same

method to compute the occupation of space, averaged over multiple simulations. The re-

sults are shown in Fig. 7b. The hot spots close to the walls of the stairway, the ramp and the

smoking area can be observed. As we had to remove some of the pillars from the platform

due to their size, some of the hot spots visible in [11] are not that distinct or are missing,

e.g., in the area between ramp and smoking area. Since we conducted 200 simulations and

computed the average over all, the hot spots are more spread compared to the sensor data,

as here only roughly 20 trains arrive at the platform. Another difference is introduced as

we only focus on boarding passengers waiting on the platform and neglect any alighting
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passengers. These pedestrians will increase space occupation, especially in front of the

platform’s entrances/exits. Despite these differences between real-life scenarios and our

simulations, our results show good agreement with the real platform’s tracking data.

(A) Occupation of space of real life trajectory data [11].

(B) Occupation of space of simulations with model from .

FIGURE 7: Comparisonof the occupationof space fromreal-life trackingdata and simulation

of waiting pedestrians with the model from .

CONCLUSION & OUTLOOK

In this work, we developed a cellular automaton for modeling pedestrians’ waiting behav-

iors at train stations. Themodel is based onpotential fields derived fromdifferent influence

factors found in experiments and field studies. Behaviors that could be observed in real-life

tracking data and are reported in field observations, as the clustering close to entrances or

close to platform infrastructure, can also be seen in the presented model. In particular, the

occupation of space shows good agreement with the tracking data.

Additional factors, such as attraction, repulsion, or danger zones, can be easily added to

the model to improve the model further. With extensive parameter studies, the influence

of each potential field could be analyzed in more detail. These results could derive param-

eter sets for different types of travelers, e.g., commuters, tourists, for the simulation. One

factor currently missing in the model is group behavior. Groups traveling together would

also choose a waiting position suitable for the whole group. A possible solution for this is

introducing an additional potential field that would highly reward proximity to the group.

As pedestrians may move to each direction in each time step, some unnatural behavior

as walking in circles or walking back and forth can be observed. One possible solution

may be to weigh the potential fields’ probabilities depending on the movement from the

previous step to penalize sharp turns. It is rather unlikely that a pedestrian comes to a halt

for a longer time in the current model. This could be changed by rewarding staying at the

current position, depending on the time spent in a particular cell.
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