
The FDS pressure equation:
Intuitive understanding and solution strategies

Dr. Susanne Kilian

hhpberlin, Ingenieure für Brandschutz GmbH, D-10245 Berlin

s.kilian@hhpberlin.de

Abstract

The pressure equation plays an important role within the entire FDS solution process. Partic-
ularly with regard to an efficient parallelization, it represents a major challenge. The following
presentation is intended to provide a more intuitive understanding of the inherent properties of this
equation and the associated implications regarding its efficient and accurate parallel solution. Basic
design principles of currently applied and potentially alternative solution strategies will be presented
and compared regarding their advantages and disadvantages.

1 MATHEMATICAL BACKGROUND

Starting from the non-conservative formulation of the momentum equation, a series of transforma-
tions and simplifications leads to the pressure equation as used in FDS,

∇
2H =−

[
∂ (∇ ·u)

∂ t
+∇ ·F

]
. (1)

The pressure term H ≡ |u|2/2+ p̃/ρ on the left hand side corresponds to the total pressure due to
Bernoulli divided by the density ρ and is largely based on the perturbation pressure p̃ by which the
fluid motion is driven. The first term on the right side implies the influence of all thermodynamic
quantities on the velocity field over time whereas the second term subsumes the effects of gravity,
particle drag, viscosity and perturbation pressure, too. For simplicity, the content within the bracket
on the right side of the equation (1) is abbreviated to R, finally leading to the general form of the
so-called Poisson equation

−∇
2H = R. (2)

From a mathematical point of view, the Poisson equation is an elliptic partial differential equation
of second order. Its unique solvability also requires the definition of appropriate boundary condi-
tions which consist either of the specification of known values of H itself (Dirichlet conditions) or
its normal gradient (Neumann conditions) along the boundary of the computational domain.

1

mailto:s.kilian@hhpberlin.de

Equations of Poisson type play a major role in many fields of science such as e.g. the cal-
culation of gravitational potentials, temperature distributions, electrostatic fields and more. Thus,
research into the development of corresponding numerical solvers follows a very long history and
has produced a variety of powerful approaches, all of which have their advantages and disadvan-
tages. The selection of a suitable representative from this collection must always be made in view
of the characteristic features and special needs of the underlying problem.

Because of the strong interaction between the pressure term H, the velocity field u and the
different components within the force term F, the Poisson equation has a large impact on the entire
solution process in FDS, too. Typical FDS simulations are often based on tens of thousands of time
steps, where each time step consists of at least two solutions of the Poisson equation as sketched
in Figure (1).

−∇
2H = R

TBEGIN Simulated Time (s) TEND

Figure 1: The Poisson equation has to be solved at least twice per FDS time step

It is therefore of great importance that the solution of this equation is both of high accuracy
and high efficiency. Detailed information on the derivation of the pressure equation (1) and all the
related quantities can be found in the FDS Technical Reference Guide [1].

1.1 Towards a more intuitive understanding of the Poisson equation

In order to gain a better understanding of the physical meaning of the pressure equation (1), some
essential steps of its derivation are examined in more detail below. First, it is important to know
that this derivation originates from a simplified version of the momentum equation

∂u
∂ t

+ ∇H = −F . (3)

This is a major consequence of the Low Mach number assumption, which is a fundamental de-
sign principle of FDS. It assumes a subdivision p = p+ p̃ of the full pressure p into a kind of
background pressure p, which only involves time and height and reflects the stratification of the
atmosphere, and a perturbation pressure p̃ which is related to the various acting forces (e.g. air or
heat being introduced into a room). For a typical fire simulation in a building which is open to
the atmosphere, p is essentially constant. What actually drives the flow field is the perturbation
pressure p̃ which may be different in every point of the geometry and is usually much smaller than
the background pressure p.

This special pressure decomposition allows to get rid of some very restrictive numerical re-
quirements that would otherwise have to be met, i.e. the step width in the numerical time stepping
scheme must only be constrained by the speed of flow (which is typically only some tens of meters
per second) as opposed to the speed of sound (which is about 340 meters per second).

2

In contrast to the original momentum equation, which uses the gradient of the full pressure p,
the simplified momentum equation (3) is only dealing with the perturbation pressure p̃. During
the upper derivation process the perturbation pressure is again split into two further parts which
are distributed to both, H and F. The main reason for this additional splitting is that the linear
algebraic system resulting from the discretization of the equation (2) does not change over time
and will have constant coefficients, which allows the use of highly optimized solvers as will be
shown in more detail below.

Finally, applying the divergence operator to the simplified momentum equation (3) leads to the
second derivative term ∇2H as used in the Poisson equation (2). Summed up as follows, ∇2H
corresponds to an application of the so-called Laplace operator ∆, or shortly, the Laplacian,

∆ = ∇
2 = ∇ ·∇ =

∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 (4)

to the scalar-valued pressure field H. In other word, the expression ∇2 represents the divergence
of its gradient field which helps to gain a more intuitive understanding of the underlying physics.

Note, that any event that generates varying pressure values in different parts of the domain will
lead to unbalanced forces that induce a flow. Figure (2) illustrates an example of a two-dimensional
pressure field H where each point of the x-y-plane is assigned a corresponding value in z-direction
(left plot). The application of the gradient operator to this scalar field, ∇H, results in a vector field
where for every point (x,y) the associated vector shows in the direction of the steepest increase of
H and is orthogonal to the contour lines, i.e. the lines of constant pressure. The direction of the
resulting flow is opposite to this gradient, namely in the direction of lowest pressure (right plot).
Note, that the gradient is zero at the bottom of the valley and the top of the hill.

Figure 2: Example of a scalar-valued pressure field H in 2D (left) with corresponding contour lines and its
negative gradient field −∇H (right)

3

Applying the divergence operator to this vector field
gives another scalar field which can be regarded as a
measure of how much the vector field expands or con-
tracts for each individual point. A positive divergence
indicates a kind of source where the vector field tends
to diverge, see the red-coloured part where all direc-
tions are pointing away from a high pressure zone. A
negative divergence indicates a kind of sink where
the vector field tends to converge, see the blue-colored
part where all directions are pointing towards a low
pressure zone. In the middle part there seems to be a
balance between incoming and outgoing vectors, with
roughly a zero divergence.

Figure 3: Regions with positive, negative and zero divergence within a velocity field

Mathematically speaking, the first derivative (the gradient) describes the change of H itself and
the second derivative (the Laplacian) in turn indicates how this rate of change itself changes, or in
other words, it defines an average rate of change of the function H.

In this sense, the Laplacian reflects the tendency of various physical quantities to reach an over-
all state of equilibrium (e.g. pressure or temperature). If there were no force terms representing any
kind of sources or sinks, each point would be in perfect average with its neighbors, corresponding
to a zero Laplacian. Functions whose Laplacian is zero are called harmonic functions. If instead
e.g. air is blown into a room at a certain point, the whole room is pressurized, because from this
point an expansion or rather a positive divergence will start. The same holds true if a fire is lit in a
room, where the heat will cause a positive divergence at the location of the fire. The pressure now
balances out very quickly or tries to neutralize itself through the domain. And for each point of the
domain, the Laplacian defines how this averaging process is related to the acting forces.

1.2 Finite Difference Discretization of the Poisson equation

To transform the analytical equation (2) into an algebraic analogue that can be handled on a com-
puter system, a finite-difference approximation of the Laplacian is used. For this purpose, the
computational domain is covered with a rectilinear grid with resolution h, as illustrated in Figure
(4). In fact, different grid widths can be used in FDS for all spatial directions, but for the sake of
simplicity this is not considered here. For each individual grid cell (i,k) the corresponding value
of H is now approximated by an average of its neighboring values and the corresponding con-
tribution of the force term based on the well-known 5-point stencil in 2D and the corresponding
7-point stencil in 3D, which exactly reflect the averaging properties of the Laplacian described
above. Applying this stencil to all n cells of the grid leads to a large linear system of equations

Ax = b (5)

with a Poisson matrix A, representing the term −∇2H, a right hand side vector b, representing the
discretized version of R and a solution vector x which finally represents the discretized solution H.

4

Whereas the sizes of b and x are equal to the number of grid cells n, the matrix A has 5- or
7-times as much non-zero entries, based on the number of H-items in the matrix stencil for the
respective dimension. The above mentioned boundary conditions of Dirichlet and Neumann type
require corresponding adjustments of the matrix stencils at cells adjacent to the external boundary
of the domain which are directly included into the matrix A. Now, every predictor and corrector
step of the FDS time stepping procedure requires at least one solution of system (5), meaning that
per time step at least two solutions of it are needed. For more information see again the FDS
Technical Reference Guide [1].

Figure 4: Discretization of the Poisson equation by the 5-point stencil in 2D

In accordance with its analytical analogue, the upper discretization process illustrates very
clearly the intrinsic properties of the discrete Laplacian: Each point is defined as mean value of
its immediate neighboring points. In this way, all points in the domain are strongly coupled to
each other. A change of one point directly influences all other points via this successive chain
of neighborhood relations. Whatever strategy is used to solve the discrete equation (5), it must
account for this highly recursive relationship within the domain, otherwise the intrinsic physical
properties may be disrupted.

2 DESIGN PRINCIPLES OF DIFFERENT PRESSURE SOLVERS

2.1 Structured versus unstructured discretization

FDS is fundamentally based on the subdivision of the computational domain into rectangular
blocks which in turn are subdivided into rectangular grid cells. Objects like walls or other obstruc-
tions internal to these meshes are mapped as rectangular shapes conforming with the underlying
grid.

Regarding the discretization of the Poisson equation (2), two alternative approaches can be
distinguished which differ in the treatment of these internal obstructions:

5

• A structured discretization explicitly includes both gas phase and solid state cells and is the
default type in FDS. The same matrix stencil is applied to the entire mesh. Without any ex-
ception, all grid cells are incorporated into the resulting discretization matrix, which therefore
takes a very regular shape. A major advantage of this strategy is that highly tuned solvers can
be used which have been specially developed for regular grid structures and can be performed
with enormous computational efficiency. However, it is not possible to directly prescribe the
correct boundary conditions along internal obstructions. Erroneously, the velocity field may
contain non-zero contributions towards internal solids with a corresponding loss of accuracy,
which is the main disadvantage of this strategy.

• An unstructured discretization only includes the gas cells, while all solid cells are omitted
from the equation system. For gas cells directly adjacent to the surface of an obstruction,
a homogeneous no-flux Neumann condition is explicitly specified and included in the matrix
such that penetration errors along internal obstructions no longer occur. The main advantage of
this strategy is therefore that it offers more geometric flexibility and achieves a higher degree
of accuracy. In contrast to the structured case, however, it requires the use of individual matrix
stencils for the different grid cells depending on their position related to obstructions such that
the regular matrix shape gets lost. The solution of such an irregular system places significantly
higher demands on the robustness of the solver which can comprehensively limit the achievable
efficiency and is the main disadvantage of this methodology.

Using the example of a small 2D mesh with an internal obstruction, Figure (5) illustrates the
differences between both strategies. In the left plot the same matrix stencil is used in and along
internal solid cells as for the rest of the mesh, all contributing equally to matrix A. In the right
plot, however, the solid cells are excluded from the matrix and corresponding modifications of the
adjacent matrix stencils are made.

Figure 5: Matrix stencils in case of a structured discretization (left) and an unstructured discretization (right)
for a 2D example geometry with internal obstruction

This procedure is reflected in the resulting Poisson matrices as shown in Figure (6). While the
structured matrix has a completely regular and predictable structure which is only associated to the
uniform cell numbering, the unstructured matrix obviously contains irregular parts with varying
structures, see the grey colored parts in the right plot whose smaller size is related to the fact that
the cells internal to the obstruction are not part of the matrix. This also results in the unstructured
matrix being smaller than the structured one, since fewer grid cells are included to it.

6

Figure 6: Poisson matrices resulting from a structured discretization (left) and an unstructured discretization
(right) for the 2D example geometry with internal obstruction

However, despite the smaller size of the unstructured matrix, the solution of the structured
system can usually be done much more efficiently, since highly optimized solvers can be used
which are specially tuned to exploit the regularity of the grid. In FDS, both the structured and
unstructured discretization type can be used in combination with suitable solution strategies each,
as will be shown subsequently.

2.2 Local versus global data exchanges

If the computational domain can only be mapped with a single mesh, the related calculations are
performed on a single processor and the subsequent considerations can be ignored. But typical
FDS geometries are much too complex to be reasonably represented on a single square-shaped
mesh, or they simply require far too many computing and memory resources to be calculated on a
single processor.

To run them on a parallel computer, the domain is subdivided into several meshes, which
are then assigned to the different processors such that the individual mesh calculations can be
performed more or less in parallel. This, in turn, means that suitable parallel versions of the
solution algorithms must be applied that can cope with this decomposition. To solve the overall
problem and not just an accumulation of independent local problems, the processors must regularly
exchange data at coordinated intervals. Two basic types of data exchange can be distinguished as
illustrated in Figure (7):

• The meshes are only coupled by local data exchanges. In this case, data is only exchanged
between directly adjacent mesh neighbors, which can usually be performed at very high speed
on modern parallel computers. This procedure is often sufficient to ensure a basic coupling of
the overall solution. However, it may not be possible to transfer global effects in time.

• The meshes are coupled by local and global data exchanges. In this case, data is exchanged
both between directly neighboring meshes and between all meshes (no matter how far apart
they are geometrically), resulting in a more immediate transfer of global information. But
the global exchange causes significantly higher execution times, especially with large mesh
numbers or an unbalanced distribution of cells across the meshes (so that with every global
exchange the smaller meshes have to wait for the larger ones).

7

Figure 7: Purely local data exchange between directly adjacent meshes (left) or local data exchange with
additional global data exchange between all meshes (right)

Now, what are the consequences of this distinction with regard to the solution of the pressure
equation? Imagine that a new information enters a cell somewhere in the domain, e.g. because air
is blown in or a combustion takes place. Certainly, the pressure is going to grow from this cell and
it will immediately try to reach a state of equilibrium with its surrounding neighbors, according
to the structure of the matrix stencil, as shown in Figure (8). These neighboring cells in turn will
try to come into balance with their respective neighbors and so on and so forth until finally the
boundary of the domain is reached.

Figure 8: Highly recursive data coupling within one single Poisson solution

Important to know is that this whole averaging process takes place within ONE single Pois-
son solution! This means that every single cell in the entire domain immediately ’feels’ the new
information. If there is only a single mesh then everything is fine because each of the considered
Poisson solvers, whether direct or iterative, manages to reproduce this highly recursive single-mesh
coupling immediately.

But what happens if the domain is too large for one processor and has to be subdivided among
several processors, as is often the case for e.g. long tunnels? In this case the new information
is first trapped in the initial mesh and can only be forwarded by a corresponding data exchange.
However, if only local data exchanges are performed, the new information can only be passed
through the domain step by step after a whole sequence of local exchanges related to the local
Poisson solutions, until it finally reaches the other end of the tunnel, as shown in Figure (9).

1. Poisson solution 2. Poisson solution 3. Poisson solution 4. Poisson solution

Figure 9: Multi-mesh case with delayed information transfer in case of only local data exchanges

Typical velocities of fire-induced flows only amount to tens of meters per second such that in
reality it would probably take several seconds for the new pressure information to reach the other
end of the tunnel. But remember, that as a consequence of the underlying Low Mach number
assumption, the FDS pressure computation is based on the special Poisson equation (1) inherently
assuming an infinitely fast propagation speed for information which will inevitably be fragmented
by a multi-mesh decomposition.

8

If there is only a small number of meshes, experience shows that a sequence of local exchanges
(as the standard FFT solver does) is sufficient to ensure appropriate coupling of the individual
meshes and to generate a sufficiently accurate solution to the global problem. However, if the
number of meshes increases, there can be a considerable delay in information transfer, which can
eventually lead to numerical instabilities, as has sometimes been observed in the discussion group,
especially for long tunnel geometries.

One way to get rid of this problem could be to distribute at least basic information globally
across all meshes. And exactly this approach is followed by the alternative pressure solvers, which
are described in more detail in the Section 3.

2.3 Direct versus iterative solver

There are two fundamentally different classes of Poisson solvers which distinguish widely in their
underlying algorithmic approach and have various representatives each:

• Direct solvers compute the solution of the system of equations in only ONE computational
cycle, which may be very complex but which finally leads to the exact solution up to machine
precision. Usually they are based on highly recursive algorithms that strongly couple the total
data of the whole domain.

• Iterative solvers perform multiple computational cycles producing a sequence of approxima-
tions which gradually improve an initial estimate of the solution until a specified tolerance has
been reached. The computational complexity associated with each single cycle is comprehen-
sively less compared to direct methods.

The difference between direct and iterative solvers is shown in Figure (10), where both classes
are represented as a kind of black-box solver. As input the respective solver receives the Poisson
matrix A and the right-hand side vector b. After either a single big computational cycle or several
smaller ones, it outputs the solution vector x.

A b

x

To solve

Ax = b

A b

x

Figure 10: Solution of system Ax = b with either a direct solver, using one large computational cycle (left),
or an iterative solver, using many smaller computational cycles (right)

Many direct representatives belong to the frameworks of spectral solvers, like the Fast Fourier
Transformation, or of the Gaussian elimination, like the LU-decomposition, as they are both avail-
able in FDS and will be presented in more detail in Section 3.

9

For single-mesh applications their highly recursive design principle excellently reflects the
globally averaging character of the Laplacian operator as described in Section 1. In contrast, for
multi-mesh applications the subdivision into single meshes causes a fragmentation of its physical
connectivity which leads to dependencies on the number of meshes (due to the need of global data
exchanges) and possible deteriorations of the resulting efficiency and/or accuracy.

Many iterative representatives belong to the classes of Conjugate Gradient oder Multigrid
methods as they are implemented within the SCARC solver class (Scalable Recursive Clustering),
see [2, 3, 4], and are available as experimental solvers in FDS. They are often easier to implement
than direct ones, because they can be reduced to a series of core components such as matrix-vector
multiplications, linear-combinations and scalar-products of vectors. A great advantage of these
methods is that they naturally allow the incorporation of domain decomposition methods and are
therefore easier to parallelize than direct ones. But their speed of convergence may be very dif-
ferent depending on specific iteration parameters and the number of meshes, too. For a detailed
overview of iterative methods see for example [5, 6]. Now, the decisive question is how many cy-
cles are needed for convergence and how the finally required sum of small cycles computationally
compares to the single complex cycle of a direct method.

3 SOLUTION STRATEGIES

Subsequently, possible solution strategies for the pressure equation (1) will be presented. This
concerns both the solvers currently available in FDS and experimental alternatives currently be-
ing developed within the solver class SCARC. The focus here is not on a detailed mathematical
description, but rather on illustrating the underlying algorithmic principles in a visual manner and
increasing awareness of possible difficulties in connection with parallelization.

3.1 Fast Fourier Transformation

The current default pressure solver in FDS is based on the mesh-wise use of Fast Fourier Trans-
formation (FFT) methods which belong to the class of direct solvers. To give an idea of how
this method basically works, a deeper understanding of the terms eigenvectors and eigenvalues of
a linear transformation Ax = b as defined by the discrete Poisson equation in (5) is very useful.
Such eigenvectors/-values are very special quantities: An eigenvector v doesn’t change its direc-
tion when the transformation A is applied to it (except of perhaps precisely reversing its direction),
but is only stretched by a scalar value, namely its respective eigenvalue λ , such that Av = λv, as
illustrated in Figure (11).

The real importance of these quantities is that they allow to reduce a given linear transforma-
tion to its bare essentials. If it is known what happens to each individual eigenvector under the
transformation, then it is also known what happens to any other vector because every vector can
be expressed as a linear combination of these eigenvectors. Thus, if all eigenvectors vi of a given
transformation matrix A are known, the solution to system Ax = b can be represented as linear
combination of the transformed eigenvectors Avi. Or in other words, the actual solution which is
very complicated on its own, can be expressed as combination of much simpler things which are
perfectly understood.

10

Figure 11: Eigenvectors and -values of a linear transformation

Usually the eigenvalues of a transformation are not known or it is extremely costly to determine
them. This holds especially true for irregular, unstructured grids. For FDS, however, the situation is
different. Remember that in the derivation of the pressure equation a special decomposition of the
perturbation pressure p̃ into two parts was used, of which only one was included in the definition
of the Poisson matrix A. If this splitting had not been done, then A would contain variable entries
that would change at each time step in relation to the changing density values over time. In this
case, a new Poisson matrix would have to be generated in each time step which would involve an
enormous amount of work. But thanks to this special splitting the resulting Poisson matrix has
constant entries that do not change during a simulation.

This allows a local FFT to be performed on each mesh to expand the solution as a linear
combination according to these eigenvectors. The local FFT-solutions are based on the highly
optimized solver package CRAYFISHPAK [7], which is extremely fast in terms of computing
time. The local solutions are then coupled together by local data exchanges to finally provide an
overall solution as illustrated in Figure (12). For a multitude of constellations this strategy has
proven to be highly efficient and robust.

Figure 12: Execution of optimized local FFT methods on the structured meshes coupled by local data
exchanges

To ensure the availability of the local eigenvectors, this FFT-based solver can only be used for
structured meshes. This may lead to a kind of penetration of the velocity field into the internal
obstructions, i.e. to non-zero normal velocity components towards them as described above.

11

In addition, although this purely locally oriented approach produces an overall Poisson solution
that is continuous along inner mesh interfaces, it cannot guarantee that the normal derivatives of
velocity will also match there. And finally, due to its purely local character this strategy may
experience difficulties to reproduce the strong overall coupling of the pressure equation which
may especially hold true in case of big geometries with many meshes and/or transient boundary
conditions with frequently changing global information.

In order to compensate these potential errors an additional iterative Direct Forcing Immersed
Boundary Method [8] is used in combination with the local FFT methods within FDS. In every
time step this method requires the repeated mesh-wise FFT-solution of the local Poisson problems
in order to achieve an iterative correction until a specified tolerance for the velocity errors along
internal objects and at mesh interfaces has been reached. In the worst case this procedure may
converge slowly along with a comprehensible increase of computing time. In this sense, the FFT
solver in FDS is not a pure direct method, but a combination of local direct methods with a global
iterative correction. For more details see again the FDS Technical Reference Guide [1].

3.2 LU-decomposition

Within the framework of the well-known Gaussian elimination algorithm, many direct algorithms
are based on the LU-factorization of the system matrix. In this process, A is divided into the
product of a lower left and an upper right triangular matrix, L and U , as sketched in Figure (13).
Because of the symmetry of the underlying problem, it holds U = LT here, such that only one
triangular matrix must be stored.

Figure 13: Decomposition of the Poisson matrix A into the product of a lower triangular matrix L and an
upper triangular matrix U

Again, it proves to be very useful that matrix A has constant entries which do not change during
the whole simulation such that the very complex factorization process must only be performed a
single time during the initialization phase. Once the decomposition is available, the solution of the
individual Poisson problems in the different time steps can simply be achieved by back substitution
exploiting the triangular structures of the matrices L and U .

In FDS an optimized LU-solver being part of the Intel Math Kernel Library (MKL) is used
to perform the respective decomposition and back substitution processes. A big advantage of this
LU-strategy is that it also works on unstructured grids, such that the correct boundary conditions
can be incorporated along internal obstructions. Depending on whether this solver is used on a
structured or unstructured discretization, it is called GLMAT or UGLMAT. Because both versions
are actually based on a mesh-spanning LU-decomposition of the global Poisson equation, the nor-
mal derivatives of the velocity field along mesh interfaces are correct. Due to its correct handling
of internal obstructions, UGLMAT offers the exact solution to the global, unstructured Poisson
problem up to machine precision.

12

But a main disadvantage of these LU-based solvers is that less benefit can be drawn from a very
convenient property of the Poisson matrix, namely its intrinsic sparsity: Even though A has only
very few non-zero entries, the factorization process leads to fill-in, i.e. produces many non-zero
entries in L and U , where A was zero before. It therefore requires a large amount of additional
memory and may be impossible in the worst case due to limited memory resources in case of large
problems with a high number of grid cells.

Although this globally oriented strategy very well reflects the strongly recursive overall char-
acter of the Poisson equation, its parallel version also requires global data exchanges to generate a
global solution. And even if this is done using the optimized Intel MKL library, these LU-based
solvers are therefore usually slower than the locally oriented FFT.

3.3 Conjugate Gradient method

Conjugate gradient (CG) methods belong to the class of iterative solvers. They do not aim to solve
the system Ax = b itself, but take advantage of the fact that its solution x is also the minimum value
of the respective quadratic form Q(x) = 1/2xT Ax− xT b . This is due to Q′(x) = Ax−b, such that
x is a critical point of Q(x).

As illustrated in Figure (14), CG methods are mainly
based on the use of gradient descent techniques
which iteratively define a sequence of vectors mov-
ing down in the direction of steepest descent (as de-
fined by the negative gradient) to finally find the min-
imum of the quadratic form Q. By applying mutu-
ally conjugate directions these search directions are
continually improved and the minimum is obtained
in at most n steps. They are restricted to symmetric
positive-definite problems and only need less storage
for several auxiliary vectors. Figure 14: Minimization in the CG method

CG methods are largely based on matrix-vector multiplications whose parallel calculation only
requires computationally cheap data exchanges between neighboring meshes. However, they also
include global scalar products requiring global data exchanges which are computationally more
expensive but also contribute to a stronger overall coupling.

A parallel CG solver is available as experimental FDS pressure solver within SCARC. Its main
advantage is that it can be applied for both structured and unstructured discretizations. In the latter
case, the correct treatment of internal obstructions is thus possible. Besides it really solves the
global mesh-spanning Poisson problem such that the transitions of the velocity field across mesh
interfaces are correct, too.

This CG-based pressure solver has proven to be robust and accurate for many different test
cases, but its main disadvantage is that it needs a comprehensible amount of iterations involving
local and global data exchanges each. Thus, it is relatively slow in terms of computational speed
and cannot compete with the FFT for standard problems that do not present significant problems
of delayed global data transfer.

13

Nevertheless, it can be combined with an additional coarse grid solution in order to capture the
global transfer of information faster, but now on the basis of a smaller (and thus computationally
less expensive) number of grid cells. It has turned out that this combination may lead to a compre-
hensible reduction of the number of iterations which is currently being analyzed. In any case there
is good reason to hope that further optimizations of the computing time are still possible.

3.4 Multigrid methods

Multigrid methods belong to the most powerful iterative solvers for the Poisson equation and are
widely used in many fields of science. They do not only use the original fine grid, but instead
a complete hierarchy of grids with increasingly coarser degrees of resolution. All levels work to-
gether in a well tuned choreography to finally produce a common global solution. The combination
of approximate solutions on the different refinement levels with an exact solution on the coarsest
level provides a much stronger global coupling which usually results in very good convergence
rates as could be seen for many test cases. Two big classes of multigrid methods are distinguished
which are both implemented as experimental pressure solvers within SCARC.

The geometric multigrid methods (GMG) pro-
duce the coarser grid levels by simply doubling
the mesh size. This is relatively straightforward
to implement in terms of the underlying data
structures, but has the disadvantage that the num-
ber of cells in each spatial dimension must be di-
visible by 2 at least once, or better more often, in
order to make this doubling possible once or sev-
eral times. In addition, obstructions that can be
perfectly displayed on the finest grid level, may
be too small to be displayed on the coarser lev-
els. Within SCARC this GMG variant is there-
fore only available for structured meshes.

Figure 15: Geometric multigrid based on
doubling the mesh size

In contrast to this, the coarsening process within
the algebraic multigrid methods (AMG) is not
geometrically based, but it only uses purely al-
gebraic information which is included in the ma-
trix A. There are many variants of this class that
differ in the interpretation of this algebraic infor-
mation. Within SCARC, a special variant was re-
cently implemented which is based on so-called
smoothed aggregation. This variant proceeds in
such a way that individual cells from the finer
grid are clustered together to form a so-called
aggregate, which then represents a cell on the
coarser grid.

Figure 16: Algebraic multigrid based on
smoothed aggregation

14

The shape of the aggregate is most closely oriented to the shape of the underlying matrix stencil
in order to ensure a high density of information transfer in the interpolation between the grid levels.
Another smoothing operation is performed to further improve the quality of the interpolation which
ultimately gives the method its name.

A major advantage of the AMG approach is that obstructions of any size can be treated and
correctly displayed at the coarser levels, so that unstructured discretizations are applicable. Fur-
thermore, it works for both even and odd cell counts and is therefore much more flexible than the
GMG approach.

Figure (17) shows the first coarsening level for a 3D geometry with a large internal obstruction.
The fine grid levels consists of 27 cells per edge. Obviously the coarsening process is capable
of correctly displaying the obstruction and internal boundary conditions can be applied there. In
accordance with this, the shapes of the remaining aggregates are automatically adapted to the shape
of the 7-point stencil in the best possible way.

Figure 17: 3D geometry with internal obstruction (left) with corresponding first AMG-coarsened grid level
as a whole (middle) and with a look inside (right)

With regard to its numerical convergence rate, the upper AMG variant is the most efficient
representative within the whole ScaRC class so far, because only a very small number of iterations
for the global Poisson solution is usually needed.

As already noted at the end of Section 3.3, a grid level coarsened with AMG techniques can
also be used as a coarse grid within a 2-level CG method to achieve a stronger global coupling with
a corresponding improvement of the convergence rate.

Both GMG and AMG manage to perfectly compute the correct normal components of the
velocity field along the mesh interfaces because they solve the global Poisson problem. But surely,
the gain in numerical efficiency (in the sense of significantly accelerated convergence rates) must
be set in relation to the computational effort required for this (more global data exchanges and
handling of more complex data structures). At present, no final evaluation of the computational
efficiency of the multigrid solvers is available. However, it is currently being analysed on the basis
of extensive test series in order to finally arrive at a comprehensive rating.

15

3.5 McKenny-Greengard-Mayo method

As explained above, CG and AMG can be used for both structured and unstructured discretizations.
In both cases, as global Poisson solvers, they succeed to calculate the correct velocity field along
the mesh interfaces. Nevertheless, it often turns out that faster convergence rates can be achieved
with structured discretizations than with unstructured ones. On the other hand, using a structured
discretization can lead to corresponding errors along internal obstructions. So if another way could
be found to ensure the correct handling of internal obstructions, the use of a global structured solver
would be highly desirable.

The McKenney-Greengard-Mayo method (MGM) follows such an approach. As sketched in
Figure (18) it splits the solution of the Poisson equation into two subsequent passes. The first
pass consists of a global Poisson solution defined on the structured discretization (i.e. ignoring the
obstruction), which satisfies the correct external inhomogeneous boundary conditions. In a second
pass a corrective global Poisson solution on the associated unstructured discretization is performed,
which satisfies the correct homogeneous no-flux boundary conditions along internal obstructions,
but has zero values at the external boundary. It is important that both passes accurately calculate
the velocity field along the mesh interfaces. Adding them together gives the solution of the original
global unstructured Poisson problem, which is now correct both at the internal obstructions and at
the mesh interfaces.

Figure 18: McKenney-Greengard-Mayo method for the global Poisson problem consisting of an inhomoge-
neous structured part (left) combined with an homogeneous unstructured part (right)

A major advantage is that the first pass allows to achieve faster convergence rates due to the
structured nature of the discretization. For the second pass it is expected, that optimizations can be
made, which take advantage of the fact, that the corresponding right hand side has relatively few
non-zero entries (namely only along the internal obstructions). This method is also currently being
tested and further evaluations regarding its computational efficiency will follow. Of particular
interest is whether the staggered solution of two supposedly simpler problems is faster than the
single solution of the global unstructured Poisson problem itself.

Figure (19) shows a simple square-shaped 2D case with an internal obstruction. While the first
pass on the left doesn’t know the obstruction, but satisfies the correct external boundary condi-
tions, the second pass contains the respective correction for the internal obstruction but without
contributing to the external boundary any more. Combining both gives the right solution. Note
that the second pass is displayed in a more detailed range to better illustrate its special shape.

16

1. pass

+

2. pass

Combined solution

Figure 19: McKenney-Greengard-Mayo method for a simple 2D domain with obstruction

4 OUTLINE

Now that the implementation of the algorithmic components of the above-mentioned iterative
solvers in SCARC is largely completed, a multitude of different strategies for solving the FDS
pressure equation is available. A positive side effect is that individual elements from this kit can be
combined in various ways, even including the computationally powerful components of the stan-
dard direct solvers. For example, the preconditioning of the CG method in its structured variant
can be based on local FFT methods, in its unstructured variant on local LU decompositions. Fur-
thermore, the coarse grids generated via multigrid techniques can be used to generate a 2-level CG
method with a respective faster convergence rate. Even a complete multigrid method can be used
as a preconditioner within the CG method. Likewise, different strategies can be combined for the
two partial solutions of the MGM method.

Thus, the objective is to profitably merge the good properties of the individual strategies and to
identify suitable combinations for certain problem classes. Of course, the increased computational
effort for these variations is only justified if they can solve cases that would otherwise lead to
inaccurate results or even longer computation times using the standard methods. In order to get a
comprehensive overview, various test series are currently being carried out, which are particularly
focused on various critical problem classes (such as e.g. long tunnel simulations). The results will
be reported in due course.

17

References

[1] K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk, and K. Overholt.
Fire Dynamics Simulator, Technical Reference Guide. National Institute of Standards and
Technology, Gaithersburg, Maryland, USA, and VTT Technical Research Centre of Finland,
Espoo, Finland, sixth edition, September 2013. Vol. 1: Mathematical Model; Vol. 2: Verifica-
tion Guide; Vol. 3: Validation Guide; Vol. 4: Software Quality Assurance. 2, 5, 12

[2] Susanne Kilian and Stefan Turek. An example for parallel scarc and its application to the
incompressible navier-stokes equations, 1997. 10

[3] Susanne Kilian. SCARC: Ein verallgemeinertes Gebietszerlegungs-Mehrgitterkonzept auf
Parallelrechnern. PhD thesis, Universität Dortmund, Berlin, 2001. 10

[4] Dominik Göddeke. Fast and accurate finite-element multigrid solvers for PDE simulations on
GPU clusters. PhD thesis, TU Dortmund, May 2010. 10

[5] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial and Applied Math-
ematics, Philadelphia, PA, second edition, 2003. 10

[6] W. Hackbusch. Iterative solution of large sparse systems of equations, volume 95 of Applied
Mathematical Sciences. Springer-Verlag, New York, 1994. Translated and revised from the
1991 German original. 10

[7] Green Mountain Software, Boulder, Colorado. CRAYFISHPAK User’s Guide, Cray Version 1.1,
1990. 11

[8] E.A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof. Combined Immersed-Boundary
Finite-Difference Methods for Three-Dimensional Complex Flow Simulations. Journal of
Computational Physics, 161:35–60, 2000. 12

18

	Mathematical Background
	Towards a more intuitive understanding of the Poisson equation
	Finite Difference Discretization of the Poisson equation

	Design principles of different pressure solvers
	Structured versus unstructured discretization
	Local versus global data exchanges
	Direct versus iterative solver

	Solution strategies
	Fast Fourier Transformation
	LU-decomposition
	Conjugate Gradient method
	Multigrid methods
	McKenny-Greengard-Mayo method

	Outline
	References
	References

