Social and Physical Pedestrian Sizes and Their Impact On the Decision-Based Modeling

Jana Vacková, Marek Bukáček

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

September 2020

Katedra matematiky FJFI ČVUT v Praze

Introduction

- Agent-based modeling
- Concept of the agent size based on the proxemics theory
- Author's decision-based model and its rules
- Pedestrian size as the one of the significant model features
- Time and spatial development of the pedestrian social size
- Impact of the pedestrian physical size on the results

Phases of the Decision-Making - In General

- Strategic phase
 - Defines the global plan of the pedestrian (at the beginning)
- Tactical Phase
 - Represents finding of course action (at each time step, for several time steps)
- Operational Phase
 - Finds the specific next position taken by the pedestrian to reach the goal (at each time step, for one time step)

Operational Phase - Blind Velocity

- Blind direction = the optimum direction (minimalizes pedestrian distance to the selected checkpoint)
- Blind speed = is projected into the blind direction, pedestrian accelerates from initial speed until the desired one is achieved

Operational Phase - Blind Velocity

- Blind direction = the optimum direction (minimalizes pedestrian distance to the selected checkpoint)
- Blind speed = is projected into the blind direction, pedestrian accelerates from initial speed until the desired one is achieved

Operational Phase - Blind Velocity

- Blind direction = the optimum direction (minimalizes pedestrian distance to the selected checkpoint)
- Blind speed = is projected into the blind direction, pedestrian accelerates from initial speed until the desired one is achieved

- If the blind velocity fails, the pedestrian needs to change the blind direction or the blind speed
 - ullet By pedestrian rotation with maximum course change angle $arphi \in (0,2\pi)$
 - By slowing down of the pedestrian, i.e. shortening the blind distance

- If the blind velocity fails, the pedestrian needs to change the blind direction or the blind speed
 - ullet By pedestrian rotation with maximum course change angle $arphi \in (0,2\pi)$
 - By slowing down of the pedestrian, i.e. shortening the blind distance

- If the blind velocity fails, the pedestrian needs to change the blind direction or the blind speed
 - ullet By pedestrian rotation with maximum course change angle $arphi \in (0,2\pi)$
 - By slowing down of the pedestrian, i.e. shortening the blind distance

- If the blind velocity fails, the pedestrian needs to change the blind direction or the blind speed
 - ullet By pedestrian rotation with maximum course change angle $arphi \in (0,2\pi)$
 - By slowing down of the pedestrian, i.e. shortening the blind distance

- Pedestrian reduces their initial size until the specific threshold value (physical size) is fulfilled
- Their sizes are reduced only to themselves - they see each other still at the initial size
- When the exit area is stuck, the pedestrian looks in the view angle and if there is a free space, accelerates with crisis acceleration acrisis
- Random sequential update

- Pedestrian reduces their initial size until the specific threshold value (physical size) is fulfilled
- Their sizes are reduced only to themselves - they see each other still at the initial size
- When the exit area is stuck, the pedestrian looks in the view angle and if there is a free space, accelerates with crisis acceleration acrisis
- Random sequential update

- Pedestrian reduces their initial size until the specific threshold value (physical size) is fulfilled
- Their sizes are reduced only to themselves - they see each other still at the initial size
- When the exit area is stuck, the pedestrian looks in the view angle and if there is a free space, accelerates with crisis acceleration acrisis
- Random sequential update

- Pedestrian reduces their initial size until the specific threshold value (physical size) is fulfilled
- Their sizes are reduced only to themselves - they see each other still at the initial size
- When the exit area is stuck, the pedestrian looks in the view angle and if there is a free space, accelerates with crisis acceleration acrisis
- Random sequential update

- Pedestrian reduces their initial size until the specific threshold value (physical size) is fulfilled
- Their sizes are reduced only to themselves - they see each other still at the initial size
- When the exit area is stuck, the pedestrian looks in the view angle and if there is a free space, accelerates with crisis acceleration acrisis
- Random sequential update

- Pedestrian reduces their initial size until the specific threshold value (physical size) is fulfilled
- Their sizes are reduced only to themselves - they see each other still at the initial size
- When the exit area is stuck, the pedestrian looks in the view angle and if there is a free space, accelerates with crisis acceleration acrisis
- Random sequential update

- Pedestrian reduces their initial size until the specific threshold value (physical size) is fulfilled
- Their sizes are reduced only to themselves - they see each other still at the initial size
- When the exit area is stuck, the pedestrian looks in the view angle and if there is a free space, accelerates with crisis acceleration acrisis
- Random sequential update

Social and Physical Pedestrian Size - Definition

- **Initial size** s > 0 as the parameter of the pedestrian
- Physical size $\tau_s > 0$ as the parameter of the pedestrian
- Social size $s_{\alpha}(t)>0, \forall t>0$, of the pedestrian \Rightarrow social compression
- It is fulfilled $0 < \tau_s \le s_{\alpha}(t) \le s$
- Pedestrian is not allowed to expand again (considering our experimental data used for calibration; this rule is easily upgradable)
- Simulation for 336 parametric sets, each of them in 10 iterations with inflow 1.5 ped/s and experimental time 120 s
- $s \in \{0.1, 0.11, \dots, 0.3\}$, $\tau_s \in \{0.05, 0.06, \dots, 0.3\}$ and $\tau_s < s$

4 D > 4 A > 4 E > 4 E > E 9 Q P

• Time development of pedestrian size and their individual density

• Spatial localization of pedestrian individual density

Spatial localization of pedestrian social size

Minimum pedestrian size for each parametric setting

• Mean speed (mean over both pedestrians and time)

Conclusions

- Concept of pedestrian size in the agent-based modeling
 - Initial size
 - Physical size
 - Social size
- Social size properties
- Impact of the physical size on the outcome
- The same results are expected in any other model

Thank you for your attention.