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ABSTRACT

Cost functions in optimisation processes are used as a measure to compute the distance between two
data sets. Commonly, the root mean square error is used as a cost function for the estimation of material
parameters based on bench-scale experiments. Due to the noise and variance in the target experimental
data, this may not be the best choice. This contribution presents three other approaches, which are
implemented into the PROPTI framework. Their application is demonstrated on experiments with a
PMMA sample in a controlled atmosphere pyrolysis apparatus (CAPA II). Although, in the specific case
investigated here, the impact of the various cost function classes is small, a benefit is expected for other
samples with varying complexity.

INTRODUCTION

Inverse modelling of bench-scale experiments is a common method to determine material parameters
for pyrolysis simulation [1], e.g. to compute flame spread. An important part in the inverse modelling
process (IMP) is the cost function. It determines the deviation between target data and a model response,
e.g. between experimental data and simulation results.
In this contribution, several different cost functions are evaluated for determining material parameter
sets that allow the simulation of pyrolysation of solid polymers. Basis for this assessment is the inverse
modelling tool PROPTI [2, 3]. Its functionality has been expanded by implementing additional cost
functions, apart from the earlier default root mean square error (RMSE). Furthermore, multiple cost
functions can now be combined and weighted individually, to allow putting emphasis on specific features
in the data. It is also possible, to take different experiments into account at once and influence their
respective contributions by assigning weights.
The added cost functions are:

• normalised root square error (NRSE) for individual points,

• threshold for single points (THR),

• RMSE applied to a range, e.g. percentage, enveloping the target data (RANGE), and

• RMSE applied to a band enveloping the target data, e.g. minimum and maximum values per time
step of multiple repetitions of an experiment (BANDS).

The numerical modelling was conducted with the Fire Dynamics Simulator FDS [4], version 6.7.4 is
used. A data set [5] is provided in addition to this article. It contains the input files for the the IMP runs
and FDS simulations, their respective results as well as further Python scripts used for the analysis of the
data.
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MATERIALS AND METHODS

Inverse Modelling Process

The IMP is conducted with the open-source inverse modelling framework PROPTI [6]. This framework
handles the communication between an optimisation algorithm and a simulation model on a computing
cluster, e.g. here the supercomputer JURECA [7]. As optimisation algorithm the shuffled complex evo-
lutionary algorithm developed by Duan et al. [8] is chosen, as implemented in SPOTPY [9]. A more
detailed description of how this process is generally set up can be found in [2, 3].
Micro- and bench-scale fire tests of consumer-grade black poly methyl methacrylate (PMMA), per-
formed by various international laboratories from the ”Condensed Phase Material Database” [10] was
chosen as IMP targets. Specifically, thermogravimetrical analysis (TGA) data from the University of
Lille - ENSCL - Unite Materiaux et Transformations (UMET) and Controlled Atmosphere Pyrolysis
Apparatus II (CAPA II) [11] data from the University of Maryland (UMD) are applied for this evalua-
tion.
The IMP is conducted with a simplified simulation setup of the CAPA II. Focus is set on determining
the thermophysical parameters, i.e. density, emissivity, conductivity and specific heat capacity. Reaction
kinetics, utilising an Arrhenius model as implemented in FDS, are treated as known parameters. These
have been estimated in a initial step, via an individual IMP, and are not adjusted any further when focusing
on the CAPA II case. For this first step, the built-in TGA model of FDS (TGA ANALYSIS=.TRUE.)
is used to run the individual simulations. TGA data from UMET [10] is used as target. Specifically,
three experiments are chosen, with heating rates of 1 K/min, 10 K/min and 50 K/min. During the
IMP, each generated parameter set is subjected to a simulation of each of the experimental conditions
mentioned above. Its combined performance for all three conditions is then used as fitness value for
the cost function. Following this process, reaction kinetics parameters for each of the two identified
decomposition reactions are determined.
The simplified simulation setup of the CAPA II is based on the simplified Cone Calorimeter setup that
was used in [3]. The focus is solely set on the mass loss of the PMMA sample, thus the gas phase
is ignored to cut down on the computational demand, i.e. SOLID PHASE ONLY=.TRUE.. To con-
trol artefacts in the mass loss data, the solid phase cells are adjusted for the PMMA surface layer. The
CELL SIZE FACTOR is set to 0.05, reducing the cell size by a factor of 20 of the automatically com-
puted FDS default. The STRETCH FACTOR is set to 1, to ensure a uniform cell size across the layer
thickness.
To replicate the two reaction steps of PMMA in FDS, two materials are defined (MATL) that each produce
a solid residue and methane as combustible gaseous species. Each of the materials gets assigned a set
of the reaction kinetics parameters based on the previous TGA-IMP. The solid residue is assumed to be
around 0.1 % of the original sample mass. From the total sample mass about 2.5 % contribute to reaction
A, while the remaining 97.5 % contribute to reaction B. Both materials are mixed in a surface (SURF)
layer according to their respective contributions, representing the PMMA slab. A thin layer is added to
the back side, representing a copper foil, as per description of the experiment and apparatus [10, 11].
The thermophysical parameters are determined in three groups of IMP runs that only differ in the utilised
cost function: BANDS, RANGE and RMSE. The test condition in the CAPA II is replicated by assigning
an EXTERNAL FLUX of 25 kW/m2 to the sample surface.
The cost function BANDS defines a band around the target data. Adding and subtracting a desired value
from the target data created the lower and upper limit of the band. These limits have been pre-computed
and are provided to PROPTI as two data series in an external text file. The limits are defined by the
variance data provided with the data from the experiments. With RANGE a lower and upper limit of
5.0 % are computed by PROPTI itself. These methods assume a perfect fit for data points of the model
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that are located within the area defined by the limits. With increasing distance to the target area the
penalty increases as well. For RMSE the divergence between the two data series of the model and the
experiment is computed directly. Here, a perfect fit is only achieved when the data points of the model
and the experiment match exactly. More detailed explanations on the cost functions are provided in
the following section. For each of the four cost functions 25 repetitions of the IMP run are conducted.
This allows to estimate the variability induced by the non-deterministic character of the optimisation
algorithm.
Furthermore, a validation step is conducted with experimental data that was not used for the optimisation
process. The best parameter sets of each IMP run are utilised in a simulation setup with an external flux
of 60 kW/m2.

Evaluation Methods

The IMP aims to minimise the differences between experimental observations and model predictions to
estimate the input parameters so the model generates an output with the least possible difference to the
experimental observations. Thus, a mathematical formulation that quantifies the difference between the
data of the experiment and the model as a cost function is needed, which is then minimised during the
IMP. A combined cost function can be established based on individual cost functions, which act on a
single data set or multiple data sets.

Single point

One single point can be defined as objective. The error is the distance between the experimental value y
and the modelled value ŷ normalised to y as shown in equation 1 and visualised in figure 1a.

NRSE =
|ŷt − yt|
yt

(1)

For example, this could be used for temperature at ignition time. By increasing the number of optimised
parameters, the width of the solution will increase. Several parameter sets may fit to the objective single
point and local optima are sufficient for a perfect fit.

Threshold

The threshold method is very similar to the single point approach. The first time ŷ(t) exceeds (equation
2) or goes below (equation 3) y(t0), is used to calculate the normalised distance on t-axis between these
two values. If the condition is never met, the assumption is that always the largest difference is applied.
A visual example is provided in figure 1b.

THRmin = min
{
|{t|ŷ(t) > y(t0)} − t0|,max{|tmin − t0|, |tmax − t0|}

}
/t0 (2)

THRmax = min
{
|{t|ŷ(t) < y(t0)} − t0|,max{|tmin − t0|, |tmax − t0|}

}
/t0 (3)

Such a cost function based on equation 2 could be the time of ignition, for example. The mass loss rate
or heat release rate will increase by a certain threshold after a defined point in time (t0), while its further
temporal development is ignored, i.e. not represented in the cost function, by the IMP.
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(a) Single Point NRSE (b) Single Point Threshold

(c) RMSE (d) RMSE BANDS

(e) RMSE RANGE (f) Combined

Figure 1: Examples of evaluation functions. Target data marked in blue and model response marked in
red. Areas marked in green indicate the distance between model response and target. Blue areas indicate
the target area.
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Table 1: Options for normalisation parameter yN

RMSE NRMSE CV(RMSE) IQRMSE
yN = 1 yN = ymax − ymin yN = ȳ yN = CDF−1

y (0.75)− CDF−1
y (0.25)

Table 2: Options for comparison value ∆yt

RMSE ∆yt = ŷt − yt

BANDS ∆yt =


0 for yt,lb ≤ ŷ ≤ yt,ub
ŷt − yt,lb for ŷt < yt,lb

ŷt − yt,ub for ŷt > yt,ub

RANGE ∆yt =


0 for (1− r)yt ≤ ŷ ≤ (1 + r)yt

ŷt − (1− r)yt for ŷt < (1− r)yt
ŷt − (1 + r)yt for ŷt > (1 + r)yt

Root mean square error

Root mean square error (RMSE) as shown in equation 4 is a measure for the difference between values of
two data sets, which contain ny data points. Figure 1c shows an exemplary mass loss rate of an irradiated
sample as a function of time with experimental values y and model values ŷ. Since the raw RMSE (yN =
1) is scale dependent and cannot be compared to other values, RMSE needs to be normalised. Table 1
provides different values for the normalisation variable yN , where yN can be the mean (coefficient of
variation of the RMSE, CV(RMSE)), the range (normalised RMSE, NRMSE) or the difference between
the first and third quartile (interquartile RMSE, IQRMSE) of y.
Another aspect of the cost function is the induced stiffness. A strict comparison of experimental and
simulation data will never reach zero values, i.e. perfect fitting. To face this aspect, a cost function that
uses a data band is introduced. Assuming uncertainties in the experimental and simulation data, this is
not limiting the quality of the inverse modelling. Yet, a less stiff system could lead to benefits like quicker
convergence and robust solutions. Table 2 introduces two different concepts to cover this. BANDS rates
any value between a lower and upper boundary as perfect fit (∆yt = 0) for a given point, otherwise it
uses the actual distance. An example of this is shown in figure 1d with lower and upper experimental
values as ylb and yub. RANGE rates ŷ with a deviation of r to y as perfect fit, otherwise it uses the actual
distance. Figure 1e shows an example.

RMSE =
1

yN
√
ny

√√√√ ny∑
t=1

(∆yt)2 (4)

Cost function formulation

The composition of the total error E, the total cost function, is formulated in equation 5 as the sum of
each single element weighted by an individual weighting factors w for each partial cost function in the
according groups (I, J,K). Figure 1f shows an example of this combination in a single data set, albeit
this approach is not fixed to a single data set, but can cover multiple experimental and model setups.
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Table 3: Reaction kinetics parameter set for a two-step decomposition determined from TGA data of
UMET [10].

Arrhenius Parameter Value Unit
Reaction A
A 9.98e+04 1/s
E 6.24e+04 kJ/kmol
Reaction B
A 1.00e+11 1/s
E 1.60e+05 kJ/kmol

E =
I∑

i=0

(wi · RMSEi) +
J∑

j=0

(wj · THRj) +
K∑
k=0

(wk · NRSEk) (5)

EVALUATION

Reaction Kinetics Data

The reaction kinetics parameters, based on UMET TGA experiments [10], are presented in table 3. The
reaction order n is set to 1. For a qualitative comparison, the normalised residual masses and mass loss
rates are provided in figure 2. Solid lines mark the data from the experiment and dashed lines mark the
simulation response. These parameters are applied unchanged in all further IMP runs that are used to
determine the thermophysical material parameters.

Thermophysical Properties

The resulting thermophysical parameters for the different cost functions are provided in table 4. This
table shows the mean values for each parameter across 25 repetitions of the IMP and the respective
variance. Furthermore, the best parameter set within each group is listed. It should be noted, that the
estimated parameters are not necessarily physical but effective parameters. The respective sampling
limits utilised during all IMP runs are provided in table 6 in the appendix.
Figure 3 shows a comparison between the mass loss rate of the CAPA II experiment at 25 kW/m2 and
the simulation response of the IMP groups. All responses are very close to each other, thus only the best
parameter set from each group is shown.
The results of the validation simulation at 60 kW/m2 are shown in figure 4. Only the responses of the
best parameter sets of each group are plotted, as well as the CAPA II data from the 60 kW/m2 experi-
ment [10]. In general, the responses are very similar to each other as in the 25 kW/m2 case. However,
all cases show significant fluctuations before the material is used up. For the cost functions RANGE and
RMSE minor fluctuations can also be observed over nearly the full duration of the simulation.

DISCUSSION

In this contribution, different cost functions are investigated with respect to their performance in finding
material parameter sets. For the chosen example case here, none of the different cost functions signifi-
cantly outperforms any of the others. The best parameter sets within each cost function group, as well as
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Figure 2: Comparison between TGA experiments by UMET [10] (Exp.) and the best parameter set of
the IMP run that determined the reaction kinetics parameters (Sim.).

Figure 3: Comparison between CAPA II experiment [10] and the best parameter sets of the IMP runs
with different cost functions.

7



Figure 4: Comparison between CAPA II experiment [10] and the best parameter sets of the IMP runs
with different cost functions as validation cases.

Figure 5: Cumulative minimum areas for the three cost functions over 25 repeated IMP runs for each
cost function. Note: The individual plots are not directly comparable due to their different cost functions.
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Table 4: Thermophysical properties, 25 repetition for each of the three cases (RMSE, RANGE, BANDS).
Symbols and units are described in the appendix, table 5.

RMSE RANGE BANDS
Param. best mean σ best mean σ best mean σ

fit 0.0892 0.0897 0.0002 0.0838 0.0846 0.0004 0.0417 0.0421 0.0002
ρa 1201.3 1204.5 1.3 1200.5 1205.0 3.1 1194.8 1196.0 0.8
ka 0.1083 0.1133 0.0021 0.1075 0.1125 0.0037 0.1160 0.1213 0.0030
cp,a 2.6037 2.7065 0.0241 2.5920 2.6909 0.0268 2.6575 2.6986 0.0167
εa 0.9298 0.9694 0.0109 0.9322 0.9656 0.0139 0.9451 0.9691 0.0110
∆h 669.2 704.3 12.3 676.6 703.0 14.7 675.2 709.1 16.3
ρr 716.4 1162.1 159.2 897.1 1161.5 132.1 797.3 1117.5 163.0
kr 0.2162 0.3349 0.0690 0.2053 0.3334 0.0623 0.1871 0.3268 0.0691
cp,r 0.7873 1.1876 0.2455 0.7970 1.2755 0.2488 0.8056 1.2873 0.3065
εr 0.9871 0.9890 0.0009 0.9837 0.9877 0.0018 0.9867 0.9888 0.0009

across these groups, show nearly the same simulation response. The variances between 0.0002 to 0.0004
for the fitness values in the different groups indicate that the different methods yield robust results. Look-
ing at the cumulative minimum of the fitness values, none of the discussed cost functions stands out in
terms of how fast they converge to their respective minimum. All need about 11 generations to converge,
see figure 5. Thus, no useful statement as to how fast convergence is reached can be made here.
For a larger number of optimisation parameters this behaviour might be different, as compared to the
nine optimisation parameters used here. Also, larger sampling limits for the individual parameters might
have a stronger effect on the convergence when choosing different cost functions. Furthermore, the
experiments were conducted in an inert atmosphere and in the simulations the gas phase reactions were
neglected. This could contribute to an oversimplified modelling of the involved processes, leading to a
more trivial case. Nevertheless, a cost function that uses an area as a target, provides means to incorporate
the uncertainty observed in the experiments. It should be pointed out, however, that it seems to be
beneficial to apply some smoothing to target area limits. Thus, the algorithm is not influenced by the
local fluctuations and more focused towards finding a global structure. This is indicated by the area in
figure 3, when directly compared to the noisy results of the experiment.
The default method of comparing two data series directly per RMSE is considered a more rigid cost
function than BANDS and RANGE. Primarily, because RMSE requires exact matches of the data points,
while slight variations in the other cases could still fall inside the target area. BANDS and RANGE could
be useful to account for variance that is encountered when repeating a single experiment multiple times
and allow for its representation during the IMP.
The ability to combine cost functions in different ways, allows to target multiple values, like heat release
rate or surface temperature, and their unique features, like heat release peaks on different experimental
setups (e.g. different heat fluxes or gas atmospheres), as these may be of crucial importance for the real-
scale applications, especially for flame spread modelling.

DATA SET

This contribution is accompanied by a data repository [5], hosted via Zenodo. It contains the complete
data of each IMP run, simulations of the best parameter sets of each IMP run, the IMP run for the reaction
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kinetics parameters, the validation simulations, the plots shown in the article and presentation, as well as
the Jupyter Notebooks used for the data analysis.
Note: The copper foil thickness is set to 0.2 mm in all simulations, due to a typo in the FDS input file
template and should have been 0.025 mm according to [11]. A simulation with the correct thickness
showed very little divergence from the conducted simulations, thus the effect of the typo is regarded to
be neglectable. Therefore, all files in the accompanying data repository are using the incorrect initial
value. The mentioned simulations and a plot comparing both results are provided in the repository.
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1 APPENDIX

1.1 Symbols Overview

Table 5: Symbols Overview

Name Symbol Unit
Activation Energy E kJ/kg
Density ρ kg/m3

Emissivity ε -
Heat Of Reaction ∆h kJ/kg
Mass Loss Rate MLR kg/(s ·m2)
Pre-exponential Factor A 1/s
Temperature T ◦C
Thermal Conductivity k m/K
Time t s
Specific Heat Capacity cp kJ/(kg ·K)
Standard Deviation σ same as the data
Reaction Order n -

1.2 Sampling Limits

Table 6: Sampling limits used for the IMP runs RMSE, RANGE and BANDS.

Parameter Lower Limit Upper Limit
ρa 600.000 1500.000
ka 0.090 0.350
cp,a 0.875 2.725
εa 0.010 0.990
∆h 250.000 1550.000
ρr 500.000 1500.000
kr 0.090 0.550
cp,r 0.500 2.000
εr 0.010 0.990
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