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INTRODUCTION



Introduction

Topic: Inverse Modelling Of Bench-Scale Experiments

e estimates material parameters for pyrolysis simulation, e.g. to compute
flame spread

Focus: Cost Function

e determines the deviation between target data and a model response, e.g.
between experimental data and simulation results.

Several different cost functions are evaluated for estimating material parameter
sets that allow the simulation of pyrolysation of solid polymers.
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Inverse Modelling Process
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Inverse Modelling Process

Performance Analysis and Shared Memory Parallelization of FDS, FEMTC 2014
Arnold et al. [2]
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Inverse Modelling Process

Performance Of Optimization Algorithms For Deriving Material Data From
Bench Scale Tests, FEMTC 2016

Lauer et al. [3]

Conclusion

« Comparsion of three algorithms with synthetic and bench
scale data

« Allthree generate similar accurate solutions

= SCE most efficient, but FSCABC often not significant nferior

- Futuretasks:

= Tune FSCABC parameters

= Applyon other models

2016 Fire and Evacuation Modelina Techniéa

Patrick Lauer

Bergische Universitit Wuppertal
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Simulation Setup

Data Source

e Material: black poly methyl methacrylate (PMMA)

e Experimental Data:
e Thermogravimetrical Analysis (TGA)
Heating rates: 1 K/min, 10 K/min and 50 K/min
Atmosphere: Nitrogen
Sample mass: 4-7 mg

L]
L]
[ ]
e Sample geometry: Powdered
e Controlled Atmosphere Pyrolysis Apparatus I (CAPA II)

e Heat flux: 25 kW/m?, 60 kW/m?

e Atmosphere: Nitrogen

e Sample dimension: Diameter: 0.07 m, Thickness: 0.0058 m
e Source: Measurement and Computation of Fire Phenomena (MaCFP):

Condensed Phase Material Database [4]
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Simulation Setup

Reaction Kinetics

e Estimated from TGA
experimental data

e Obtained with inverse
modelling

e Parameters: reaction
kinetics (Arrhenius

model)

e Target: 3 different
heating rates

e Simulated with
pyrolysis model of FDS

o Modelled with two

independent reactions

e Estimation process not
covered in this talk [5]
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Figure 1: Comparison between TGA experiments by
UMET [4] (Exp.) and the best parameter set of the

IMP run that determined the reaction kinetics

parameters (Sim.). 13



Simulation Setup

Thermophysical Properties

Estimated from CAPA Il experimental
data

Obtained with inverse modelling

Parameters: thermophysical

parameters (density, emissivity,

|

conductivity, specific heat capacity) N
Target: 25 kW/m? heat flux L+

Validation: 60 kW/m?* heat flux -
Pyrolysis model of FDS

\

Reaction kinetics from TGA (see

above)
Figure 2: Simplified FDS simulation

Calculati ducted with th
alcuiation conducted wi ree setup of the CAPA I, based on [5].

different cost functions
25 repetitions of each IMP setup for
evaluation of robustness
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Simulation Setup

Software

e Pyrolysis Model: Fire Dynamics Simulator [6]
e Inverse Modelling Framework: PROPTI [5, 7]
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MATERIALS AND METHODS

Evaluation Methods
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Cost Function
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Cost Function
RMSE
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Cost Function

RMSE BANDS
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Cost Function

RMSE RANGE
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Cost Function

Combination
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Evaluation



Evaluated Cost Functions

e RMSE: mean experimental data
e RMSE RANGE: +5 % of experimental data
e RMSE BAND: uncertainty band provided with the experimental data
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Thermophysical Properties

Estimation with 25 kW /m? case
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Figure 3: Comparison between CAPA Il experiment [4] and the best parameter sets of
the IMP runs with different cost functions.



Thermophysical Properties

Validation with 60 kW/m? case
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Figure 4: Comparison between CAPA |l experiment [4] and the best parameter sets of
the IMP runs with different cost functions as validation cases.
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Thermophysical Properties

Estimated Parameters

RMSE RANGE BANDS

best mean o best mean o best mean o
fit 0.0892 0.0897 0.0002 0.0838 0.0846 0.0004 0.0417 0.0421 0.0002
Pa 1201.3 1204.5 1.3 12005 1205.0 3.1 11948 1196.0 0.8
a 0.1083 0.1133 0.0021 0.1075 0.1125 0.0037 0.1160 0.1213 0.0030
Cp,a 26037 27065 0.0241 2.5920 2.6909 0.0268 2.6575 2.6986 0.0167
€a 0.9298 0.9694 0.0109 0.9322 0.9656 0.0139 0.9451 0.9691 0.0110
Ah 669.2 704.3 12.3 676.6 703.0 14.7 675.2 709.1 16.3
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Robustness
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Figure 5: Cumulative minimum areas for the three cost functions over 25 repeated
IMP runs for each cost function. Note: The individual plots are not directly
comparable due to their different cost functions.
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Discussion

Specific Case |

Different cost functions are investigated with respect to their performance in
finding material parameter sets.

For the chosen example case here, none of the different cost functions
significantly outperforms any of the others.

The best parameter sets within each cost function group, as well as across
these groups, show nearly the same simulation response.

Looking at the cumulative minimum of the fitness values, none of the discussed
cost functions stands out in terms of how fast they converge to their respective

minimum.

Thus, no useful statement as to how fast convergence is reached can be made
here.
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Discussion

Specific Case Il

For a larger number of optimisation parameters this behaviour might be
different.

Larger sampling limits for the individual parameters might have a stronger
effect on the convergence when choosing different cost functions.

Experiments were conducted in an inert atmosphere and in the simulations the
gas phase reactions were neglected. This could contribute to an oversimplified
modelling of the involved processes, leading to a more trivial case.
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Discussion

Generic Considerations

A cost function that uses an area as a target, provides means to incorporate
the uncertainty observed in the experiments.

RMSE requires exact matches of the data points, while slight variations in the
other cases could still fall inside the target area. BANDS and RANGE could be
useful to account for variance that is encountered when repeating a single
experiment multiple times and allow for its representation during the IMP.

The ability to combine cost functions in different ways allows to target multiple
values, like heat release rate or surface temperature, and their unique features,
like heat release peaks on different experimental setups (e.g. different heat
fluxes or gas atmospheres), as these may be of crucial importance for the
real-scale applications, especially for flame spread modelling.
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Conclusion

Two newly implemented cost functions were evaluated against a commonly
used cost function.

They compare the modelled data against an area, not a data series.

No significant difference in performance, robustness and results was observed
for the investigated case.

Still, this is useful to take experimental uncertainty into account.

It might also provide an advantage in performance, robustness and results in
more complex cases.
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PROPTI

https://zenodo.org/record /1438349
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Data set repository

https://zenodo.org/record /3987799
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Fin

Thank you very much for your attention!
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