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ABSTRACT
Calibration of any model is the crucial part of pedestrian movement prediction. Hence a suitable cali-
bration approach is needed. This paper deals with an author’s microscopic decision-based model and
a general calibration concept which is focused on the phase of congestion. Dense crowd behaviour is
modelled by two parameters describing the agent size, namely social and physical pedestrian sizes.
The physical (minimum) pedestrian size is considered to be known – it can be estimated from the
real data using distance of human shoulders. However, the social size can vary during the time
with respect to the surroundings of the pedestrian. Furthermore, the size estimated by a general
metric may significantly differ to the individual pedestrian experience. In other words, pedestrians
decide about their own (social) compression in a crowd. Therefore, the calibration process has to
be based on sophisticated methods considering individual pedestrian behaviour rather than simple
macroscopic quantities. Thus, this calibration study shows how pedestrian trajectories and derived
microscopic quantities (especially local density) can be applied. An experimental data of passing
through a room with one exit are used.

INTRODUCTION
As the population grows, the pedestrian dynamics research is not only more trendy, but also more
needed now than in the last century [11]. To predict the pedestrian movement during evacuations
or any other kind of crowd situations, the pedestrian models are used. Individual data analysis from
egress experiments stands beside the modelling, but it is necessary as well.

Having a model with defined rules and principles, its parameters can be set up by physical laws.
However, this setting does not have to be the one which produces a real system. The aim of the
calibration process is to find the eligible parameter values and make the model replicate the reality
accurately [14]. Calibration of models is not important only in pedestrian models, it is a general
topic [3].

Nevertheless, there is not a single correct way to calibrate the model - there is no universally right
method [3]. Different methods are used according to the type of the model, its following application
and, of course, the author’s preferences. We can apply heterogeneity (especially pedestrian type) in
calibration [5], maximum likelihood estimation under assumption that an error (between model and
data) is normally distributed [9], macroscopic quantities (fundamental diagram) [13] or individual
pedestrian trajectory data [7]. The choice of the quantity, which represents the data properties, and
the objective function or method, which describes the error between model and real data, is very
difficult. To cover more than one metric, multiobjective calibration was studied [4].

In the last decades, statistical methods used for calibration became more and more popular [1,16].
However, the most used method is still maximum likelihood estimation [10] which brings only
the point estimate of a model parameter. Few publications taking into account a distribution of
a parameter in question arose recently, e.g. [6], and showed that using statistical methods is very
promising approach in model calibration.

Having designed and developed decision-based model continuous in space [18], the calibration
process can be started. Our calibration concept consists of separate calibration episodes. We want
to avoid choosing just a few metrics and quantities to describe the whole, complex system and
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rising problems with finding the global optimum. Thus, we design the calibration episodes which
are separate and every of them covers one type of pedestrian behaviour captured by (one or several)
model parameters. Firstly, we need to capture the basic properties of the movement process. From
this reason we start1 with agent sizes which were shown as one of the crucial features of the crowd
behaviour in our model [19].

This paper provides an insight into one of many calibration episodes from definition of calibration
quantities and estimates of simulation time to hypothesis testing used to find an optimum value (or
optimum set) of parameters. As was mentioned above, the calibration process is not universalised.
Therefore one of the goals of this contribution is to document the whole calibration episode precisely.

DECISION-BASED MODEL AND PEDESTRIAN SIZES
Rules of used decision-based model are defined properly in [18], all model parameters are denoted
in Table 1.

Presented calibration episode solves parameters of pedestrian size. We assume that all pedestrians
have the same initial size s ∈ R+ when they come into the system and, as they move towards the
exit in time t ∈ R+, we allow to change their size in order to cover the crowd behaviour when the
exit capacity is almost reached – we call it pedestrian social size sα(t). Their social sizes are reduced
only to themselves - they see each other still at the initial size s and, only from their perspective,
they may decide about their own pressing, i.e. social compression, see Figure 1. This behaviour
reflects the real ability of pedestrian to pass through narrow space using body rotation or pressing.
The minimum possible pedestrian (social) size is called pedestrian physical size τs ∈ R+. Initial and
physical sizes are model parameters (see Table 1) and it is fulfilled that 0 < τs ≤ sα(t) ≤ s. The
physical size can be estimated from the real data using distance of human shoulders. However, it
is possible to design the physical size smaller than the real one in the model if it is required for the
modelling purpose. The pedestrian social size is non-increasing function, i.e. the pedestrian is not
allowed to expand again if their path is free again – the function trend considers our experimental
data used for model calibration with evacuation of one room through one exit. For this kind of
experiment, it is sufficient this specific resizing; for different experimental settings, the model can
be easily upgradable for an arbitrary trend in the function of pedestrian social size.

Figure 1: Pedestrians are drawn as dots in their physical size τs. Solid circles around them represent
the size sα(t) at fixed time t, dotted circles depict the initial size s.

When the reducing of pedestrian (social) sizes is not sufficient for non-zero bottleneck flow, i.e. the
exit area is stuck and the pedestrian is the part of the arose arch, a ’crisis rule’ is then applied –
the pedestrian looks in a specific angle and if there is a free space, the pedestrian leaves the arch
and goes right to the exit from the room. Otherwise, the pedestrian has no place to go due to the
crowd and their speed becomes zero. Calibration of these ’crisis’ parameters will be topic of further
research.

1Calibration episode about maximum speed of agents precedes this one. However, it was really straightforward.
Calibration episode about agent sizes is more interesting.



Table 1: List of model parameters.
Parameter Mark Units Meaning Restrictions

tStep δt s time step δt → 0+

xStep δx m spatial step for shortening δx → 0+

aStep δξ rad angular step for rotation δξ→ 0+

wallDist w m min. distance from wall etc. w ∈ R+0
sizePed s m size of pedestrian s ∈ R+

reducePedStep δs m step to reduce pedestrian size δs→ 0+

thresholdSizePed τs m minimum size of pedestrian 0< τs ≤ s
vOpt vopt m/s pedestrian optimum speed vopt ∈ R+

vIni vini m/s pedestrian initial velocity ||vini|| ≤ vopt

nutAngle ν rad ped. field of vision 0< ν≤ 2π
maxCourseChange ϕ rad max. change of ped. course 0< ϕ ≤ 2π

acce a m/s2 pedestrian acceleration a ∈ R+

acceCrisis acrisis m/s2 accel. if an arch occurs acrisis ≥ a
viewAngle θ rad field of vision if arch occurs 0< θ < π

nCP nCP - current checkpoint benefit nCP ≥ 0
m mCP - power of distance to checkpoint mCP ≥ 0

EXPERIMENTAL DATA
The used scenario during model calibration is fixed in accordance with the egress experiment from
[2], including size of the room (observed area is 6 m ×2.24 m with centred exit with a width of 0.6
m) and random inflow (using exponentially distributed time headways at the input) set-up as 1.5
ped/s. Pedestrians (undergraduate students) randomly entered the room by one of three entrances,
walked to the opposite wall and left the room by one exit, as seen in Figure 2. By controlling input
flow, different conditions from free flow to congestion in the exit area were achieved. In total, our
sample is made up of 2000 paths through 10 experimental runs. In this calibration episode, we
exclude pure free flow experimental runs.

Figure 2: Schema of the experiment and a snapshot from a camera, from [2].

METHODOLOGY
In our calibration episode, we will use for finding an optimum value (or set) following techniques.
Firstly, Chebyshev’s inequality

P
�

|ξ−µ|<∆(n,ε)
�

≥ 1− ε, (1)

where µ is mean value of a random quantity ξ and ξi , i ∈ N, i ≤ n, are random realisations of
random quantity ξ. If Var (ξ) = σ2 < +∞, ∆(n,ε) = σp

nε , where ε ∈ (0, 1). In popular terms, we
know that we are able to compute the mean value of random quantity ξ using n iterations with an
error (from real mean value µ) less than ∆(n,ε) with probability greater or equal to 1 − ε. This
method can be used for estimates of number of iterations needed to obtain a result with specific
error for calibration itself. Besides, we will use tight and wide version for finding an optimum set,
i.e. a set of parametric sets ensuring similarity to experimental data. We can say that a parametric



set belongs to a tight (accepted) optimum set if this point including a neighbourhood delimited by its
Chebyshev’s error belongs to neighbourhood of the experimental value with radius of experimental
Chebyshev’s error. We can say that a parametric set belongs to a wide (cannot be rejected) optimum
set if intersection of error neighbourhoods of this point and experimental value is not an empty set.
In this version, it cannot be easily said the probability under which we cannot reject any parametric
value. This issue is treated in hypothesis testing.

Hypothesis testing is a statistical approach that can be used here in the following way. We test for
each parametric set j ∈ N null hypothesis H0 versus its alternative H1 as

H0 : µ j = µE vs. H1 : µ j 6= µE , (2)

where µE and µ j represent experimental and jth parametric set respectively. We have to use multi-
variate test, specifically we choose James’ test, see [8,12]. This test is derived for unknown covari-
ance matrices and unequal number of observations used for obtaining µ j ,µE and its test statistic,
evaluated for every parametric set j ∈ N,

T := (µ j −µE)
′
�

1
n1
S j +

1
n2
SE

�−1

(µ j −µE), (3)

where S j ,SE are estimates of covariance matrices, is approximately distributed as T ∼ χ2
d when H0

is true. Although there is an assumption which we should examine (model and experimental data
should be normally distributed), James’ test is robust to non-normality. To check this property, we
use test based on skewness and kurtosis of multivariate distribution from [12]. In the both tests, we
use fixed significance level α= 0.05. Parametric sets with p-value greater than α then belong to the
optimum set.

Minimization of Euclidean distance is mentioned here just to be compared with the methods described
above, it is the simplest way how to find an optimum value, i.e. to find a minimum of an objective
(error) function (chosen as Euclidean distance here). Then the error can be computed for each
parametric set j ∈ N as follows

error( j) =
Ç

(N1, j − N E
1 )2 + (N2, j − N E

2 )2. (4)

Major weakness of this method is that it does not take into account a variance of data. We under-
stand top 10% parametric sets with the smallest deviations as the optimum points constituting the
optimum set.

CALIBRATION EPISODE
Calibration Quantities
Calibration quantities need to be defined properly to capture pedestrian behaviour for which they
were designed in the model. The initial pedestrian size s represents pedestrian size in free flow.
On the contrary, the physical pedestrian size τs (the minimum reachable social pedestrian size)
represents pedestrian size reached in a crowd. In order to capture these two different modes, we
evaluate a number of pedestrians in a detector under specific conditions (regulated using another
detector). At first, we need to define these detectors and a method how the conditions will be
regulated, secondly the number of pedestrians (mean and variance) needs to be evaluated, and
finally, the definition of two calibration quantities has to be established.

We define first detector S (small rectangle) for measuring the number of pedestrians and second
(helping) detector L (large rectangle) which will be used for regulation of conditions to obtain two
regimes discussed above:

S :=
�

x= (x , y) ∈ R2|x ∈ 〈2,4〉 ∧ y ∈ 〈0.5,1.5〉
	

, L :=
�

x ∈ R2|x ∈ 〈1, 5〉 ∧ y ∈ 〈0,2.24〉
	

. (5)

Motivation for placing the small rectangle 0.5 m far from the exit is that we expect higher number of
pedestrians in this area than in the exit area. The position and size of the small rectangle is chosen



Figure 3: Comparison of standard (Dirac) and conic counting of pedestrians in detector S and L for
experimental dataset (all experimental rounds are depicted one by one).

to capture the main corridor. The position and size of the large rectangle is chosen to cover the most
of an observed area, excluding its underused peripheries.

To evaluate the number of pedestrians in these detectors, the kernel method [15, 17] will be used,
especially

NS :=

∫

S
p(x, R) =

∫

S

∑

α

pα(x, R) (6)

with conic kernel pα(x, R) and blur of size R= 0.9 m according to parametric study from [20]. The
number of pedestrians in large rectangle NL is defined analogously. We choose this kernel method,
see Figure 3, because it produces continuous number of pedestrians in a comparison to the standard
(Dirac) counting of pedestrians. Therefore we do not need to decide between 10 or 11 pedestrians
during the calibration process - we could choose an arbitrary value between them, for instance
10.759 pedestrians.

Having the detectors and evaluation method already defined, the number of pedestrians can be
measured in the small rectangular detector under two regimes

N1 :=max
t∈R+

¦

NS(t)|NL(t)≤ τ
(1)
L

©

, N2 :=max
t∈R+

¦

NS(t)|NL(t)> τ
(2)
L

©

. (7)

We need to find an appropriate value of the thresholds τ(1,2)
L representing the separation lines be-

tween two regimes needed for this calibration episodes. Therefore we will analyse it in our experi-
mental data to set it correctly.

We need to find the value which allows pedestrians to walk in a free flow, i.e. minimum and maxi-
mum speed measured in detector S may help

min vS(t) :=min
α∈N
{‖vα(t)‖ : xα(t) ∈ S} ,

where xα denotes the position of pedestrian α and vα their velocity. This definition works analo-
gously for max vS . With help of these two quantities, we can distinguish these two regimes in Figure
4. Threshold τ(1)L may be chosen as 8 ped because min vS and max vS clearly decreased around this
point. Besides, 8 pedestrians occupying detector L produce average density around 0.9 ped/m2



which is certainly representing the free flow. Hence, we choose τ(1)L = 8 peds. Threshold τ(1)L needs
to be chosen to ensure low minimum and also low maximum speed in detector S. Consequently we
need to choose τ(2)L ≥ 10 peds. Besides, the averaged density in detector L greater than 2 peds/m2

implies condensed conditions (especially assuming a crowd in the exit area). Hence, we choose
τ
(2)
L = 18 peds (18/|L| ≈ 2 peds/m2). Moreover, it can be clearly seen from Figure 3, where all ex-

perimental rounds are depicted one by one, that the chosen values for τ(1)L and τ(2)L copy quantitative
phenomena for stabilized free flow and stabilized congestion.

Finally, computed experimental values of calibration quantities including variances and Chebyshev’s
upper boundary ∆E(n,ε) needed for calibration are in Table 2.

Table 2: Computed calibration statistics from the experimental data. Chebyshev’s upper boundary ∆E

is computed using n= 7 and ε = 0.05.

i N
E
i [ped] Var

�

N
E
i

�

[ped2] ∆E(n,ε) [ped] Var
�

N E
i

�

[ped2]
1 4.15 0.01 0.48 0.28
2 7.58 0.06 1.05 0.62

Figure 4: Dependence of minimum and maximum speed in detector S on number of pedestrians NL .

Set-up of Calibration Episode
We already discussed setting of experimental geometry and inflow into the room. At this stage, we
have to examine time length of a simulation and number of pedestrians.

To realise the maximum (needed) experimental time, i.e. the time of running the model to obtain
stationary (stable in time) results, we choose three test parametric sets which is variable in s and
τs and represent all possible parametric situations under condition 0 < τs ≤ s (low s and low τs,
high s and low τs, high s and high τs). Let us remind that other parameters (not calibrated in this
episode or already calibrated parameters are fixed at the same value during the whole calibration
episode). Exact values for test parametric sets are denoted in Table 3. We performed 50 iterations
with maximum experimental time as 500 s for these test parametric sets.

Table 3: Chosen test parametric sets for finding a suitable set-up of this calibration episode and needed
simulation time for obtaining quality value in a simulation (using relative error ε = 0.05).

- s [m] τs [m] t(1)stop [s] t(2)stop [s]
PS1 0.1 0.1 82.20 -
PS2 0.25 0.1 31.85 136.40
PS3 0.25 0.25 32.70 36.50

We can find the maximum (needed) experimental time tstop using relative error between stationary
(obtained by the whole simulation, i.e. it ran 500 s in our case) NS

i := Ni(t = 500) and actual value
of Ni , i ∈ {1, 2} as

t(i)stop :=min

¨

t ∈ R+ :

�

�Ni(t)− NS
i

�

�

NS
i

≤ ε

«

(8)



which can be interpreted as the first time step t fulfilling that absolute difference between actual
value of Ni(t) and stationary value NS

i is less than ε · 100 % of this stationary value. We performed
this metric for all test parametric sets with ε = 0.05 and the results are seen in Table 3. Visualisations
of time development (median and inter-quartile range) are depicted for N2 in Figure 5. It can be
seen that PS1 for low s and low τs is not able to create congestion (i.e. NL ≤ 18 ped) and from this
reason there is no curve for this combination in Figure 5. Final value of tstop can be defined as

tstop :=
¡

max
i∈{1,2}

max
j∈{1,2,3}

t(i)stop( j) ·
1

100

¤

· 100 (9)

to give an extra space for possible variations in results due to stochasticity (index j represents dif-
ferent test parametric sets and d·e the ceiling function). Thus, we use tstop = 200 s.

Finally, the number of pedestrians allowed to come into the model remains to be established. We
use cped = 300 ped because of the fact that this number ensures the continuous inflow during 200 s
of model run with mean time headway equal to 2 s.

Figure 5: Time development of N2 (median and inter-quartile range) for different maximum experi-
mental time tstop for test parametric sets from Table 3.

Number of Iterations
Having set up simulation properties which are needed to run a model to be comparable with the
used experiment, we need to solve a computational-statistic issue, i.e. we need to find the number
of needed iterations to conserve certain accuracy. Using Chebyshev’s inequality (1) we are able to
fix an error caused by a limited number of iterations of model simulations.

Table 4: Chosen test parametric sets for finding a suitable set-up of this calibration episode and varying
number of iterations (using probability error ε = 0.05).

- ∆(1)(n,ε) ∆(2)(n,ε)
n [-] 10 20 30 40 50 10 20 30 40 50

PS1 0.71 0.50 0.41 0.36 0.32 - - - - -
PS2 0.46 0.33 0.27 0.23 0.21 3.75 2.65 2.17 1.88 1.68
PS3 0.59 0.42 0.34 0.30 0.27 0.44 0.31 0.26 0.22 0.20

We use the same test parametric sets as in the previous section (see Table 3) and ∆(n,ε = 0.05) is
examined for varying number of iterations n ∈ N. The results can be seen in Table 4 and in Figure



6. We may conclude that the less stable test parametric set in the sense of stochasticity is PS2 (high
s and high τs). If we choose n = 50, we obtain (at worst) almost the same value of error as in the
experimental dataset. Hence we conclude with chosen n= 50 iterations.

Figure 6: Chebyshev’s ∆(1,2)(n,ε) for ε = 0.05 for different number of iterations 2≤ n≤ 50.

Test of Episode
Since our concept of calibration assumes separate calibration episodes, we have to check if a change
in to-be-calibrated parameters s,τs produces a change in calibration quantities N1, N2, and if a
change in not yet calibrated parameters (other than s,τs), which are fixed during this calibration
episode, does not cause any change in the calibration quantities N1, N2.

We use again the test parametric sets defined in Table 3 to check the first property. Their values of
N1 and N2 are depicted in Figure 7 where can be clearly seen that the values of calibration quantities
are influenced by the values of to-be-calibrated parameters s and τs.

Figure 7: Values of calibration quantities N1 and N2 for test parametric sets defined in Table 3.

To check the second property, we need another test parametric sets. Firstly, we fix the to-be-
calibrated parameters at arbitrary values, for example, s = 0.25 m and τs = 0.15 m. Not yet
calibrated parameters (10 in total) have to change their values. However, this would involve a huge
number of parametric combinations, due to the huge number of parameters with continuous range
of values. Thus, we reduce the number of combinations to save the computational time. To do it,
we establish three values (low, middle, high) for each not yet calibrated parameter, and an initial
setting of them, see Table 5. In every second-property-test parametric set just one parameter will be
changed, the other parameters will be kept at the initial values. Then the final number of combina-
tions will be only 3 · 10 = 30. The results can be seen in Figure 8 and we can state that changes in
other parameters do not produce a significant change in calibration quantities.

Perform of Episode
Having prepared every feature of this calibration episode, the final parametric sets can be estab-
lished. In accordance with our validation and verification study in section in [19], we may expect
that calibrated values fulfil s ≥ 0.16 m and τs ≥ 0.15 m (to make pedestrians to walk at a speed
lower than the maximum speed). Using these findings, we design the final parametric sets for cali-
bration of pedestrian initial size s and pedestrian minimum size τs as

�

(s,τs) ∈ R2 : s ∈ {0.1, 0.12,0.14, . . . , 0.4} ∧τs ∈ {0.1,0.12, 0.14, . . . , 0.4} ∧τs ≤ s
	

. (10)



Figure 8: Values of calibration quantities N1 and N2 for the second test parametric sets defined in Table
5.

Table 5: List of values for each not yet calibrated parameter used during the test of episode. Initial
values are bold.

Parameter Low Middle High

δt [s] 0.01 0.05 0.1
δx [m] 0.01 0.05 0.1
δξ [rad] 0.01 0.05 0.1
δs [m] 0.01 0.05 0.1
w [m] 0 0.05 0.1
acrisis [m/s2] 30 60 100
ϑ [rad] π/64 π/32 π/16
ν [rad] π/8 π/4 π/2
a [m/s2] 0.1 0.5 1
ϕ [rad] π/4 3π/4 π

Other (not yet calibrated) model parameters are set to their fixed values defined in Table 5. In total,
we have 136 final parametric sets whose values of N1 and N2, and experimental values N

E
1 , N

E
2 , are

depicted in Figure 9. It can be clearly seen that it is possible to find a parametric set with similar
values as the experiment produces. Hence we can use this final parametric sets to perform this
calibration episode.

At this stage, we compute Chebyshev’s delta method and Euclidean distance. To decide about op-
timum set in the case of hypothesis testing, firstly, we need to check the normality of the data. We
have 7 experimental observations available, thus the normality test does not have a high power - we
just can say that our experimental dataset does not produce a distribution which is fundamentally
different from a normal distribution.

We have 50 observations (iterations) for each parametric set in our model, thus we can decide about
normality of data more significantly. A statistic describing multivariate skewness is denoted as A,
statistic describing multivariate kurtosis is denoted as B (for more details see [12]) and for the both
statistic we evaluate if hypothesis H0 (skewness/kurtosis is the same as for normal distribution) is
rejected or not at significance level α= 0.05. We found that we cannot reject the null hypothesis in



Figure 9: Model values of N1, N2 for every parametric set and experimental values N
E
1 , N

E
2 .

the most cases . For only four parametric sets the both statistics A and B at the same time reject the
null hypothesis. Therefore we can conclude that we have approximately normally distributed data.

Having fulfilled assumptions, James’ test [8] is performed for every parametric set j at significance
level α= 0.05 and the final optimum set can be seen in Table 6.

In Figure 10 and Figure 11, there is a visual comparison of optimum sets obtained by these three
methods. Even though Chebyshev and Euclidean distance are just approximate in a comparison
to hypothesis testing, all three methods give similar optimum sets. However, only in the case of
hypothesis testing, p-values denoted as p j (if we rejected parametric set j, we would make an error
with probability p j) of every parametric set j is evaluated.

Figure 10: Final results of the calibration episode about pedestrian sizes s and τs obtained by different
methods. Ranges of examined parameters are drawn by red dashed line.

Parametric sets chosen by hypothesis testing are consistent with our validation study from [19]. We
noted there, for instance, that initially smaller pedestrians do not change their size, i.e. τs is almost
equal to their initial size due to no crowd and no reason to resize. Initially wider pedestrians allow
more resizing than the initially smaller pedestrians - although they could leave the room much bigger,
their τs is much smaller. It results from the fact that wider pedestrians produce congestion near the
exit, thus the ability to pass through narrow space using body rotation or pressing is stronger.

As we have more options for pedestrian sizes to choose, we expect that it may be more suitable for
further purposes to choose the values with higher difference between s and τs. This choice is able
to model more type of social compression during a pedestrian movement in a room and to ensure
more diversity between pedestrians themselves. Therefore we choose s = 0.38 m and τs = 0.20
m, which is the fifth best result according to its p-value, see Table 6 or Figure 11. Let us note that
parametric sets with τs > 0.30 m (parametric set j = 78 from Table 6) are not possible due to the
size of the exit in experiment which is 0.60 m.



Figure 11: Final results of the calibration episode about pedestrian sizes s and τs obtained by hypothesis
testing: p-values for every parametric set.

Table 6: Final results obtained by hypothesis testing of the calibration episode about pedestrian sizes s
and τs.

j [-] s [m] τs [m] p-value [-]
87 0.34 0.26 0.62
75 0.32 0.26 0.53
86 0.34 0.24 0.44
99 0.36 0.24 0.33

111 0.38 0.20 0.30
76 0.32 0.28 0.21
78 0.32 0.32 0.17
98 0.36 0.22 0.15
77 0.32 0.30 0.15
66 0.30 0.30 0.15

112 0.38 0.22 0.10

CONCLUSIONS
To summarize, we defined calibration quantities for capturing parameters of pedestrian sizes in our
decision-based model, which are influenced only by appropriate model parameters. We studied
maximum needed time tstop to get a stationary values of calibration quantities which saved a lot of
simulation time that would have been useless. Chebyshev’s estimate of number of iterations had a
strong impact on the quality of the results of the whole calibration process. Furthermore, hypothesis
testing, which we used to find an optimum parametric set, is powerful mathematical tool which can
be easily interpretable. Although Euclidean distance does not involve variances of observations and
Chebyshev’s estimate does not provide exact probabilities of acceptance, they found the optimum
set similarly to hypothesis testing.

To conclude, we recommend to use statistical methods, including testing of hypothesis, throughout
the entire calibration process of any model. For further calibration episodes, we choose s = 0.38 m
and τs = 0.20 m.
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