
PROCEEDINGS, Fire and Evacuation Modeling Technical Conference (FEMTC) 2022
Hybrid In-Person and Online Event, September 12-14, 2022

Page 1 of 11

Generating Parametric Analyses
and Using Variables Within Your FDS File

xFDS version 0.3

Brian Cohan PE

PBD Tools
1108 East Main Street, Ste. 906-1944

Richmond, VA 23219 USA
e-mail: briancohan@pbd.tools

ABSTRACT
Fire modeling projects often require studying a variety of configurations, such as different mesh
resolutions, smoke exhaust capacity, and more. These analyses often require the modeler to create
numerous input files or custom tools to generate an array of scenarios to process. Imagine if you
could generate the FDS models and dynamically set values for each scenario from a single FDS file.

This paper introduces xFDS, an open-source command-line tool built to accelerate your fire
modeling workflow. xFDS uses a templating system that allows the user to create variables and
logic to dictate which lines are included in each scenario. Furthermore, xFDS allows users to run
their models locally under various FDS versions without having to install FDS on their machines.

INTRODUCTION
Fire Dynamics Simulator (FDS) is the most common software used for modeling purposes (Wade,
Nilsson, Baker, & Olsson, 2021). There are numerous tools available to help with generating FDS
models, ranging from spreadsheets and custom scripts to commercial products. While these tools
simplify the modeling process, calculations used to determine the FDS inputs are often in a different
file, leading to copy-and-paste errors or failure to update certain models correctly. xFDS provides a
general purpose framework for developing models in a way that allows the modeler to document
their decisions and calculates FDS input values when generating the final models.

STANDARD FDS SYNTAX OVERVIEW
To run an FDS model, the user must supply the program with a single text file that defines all the
necessary information for that model (McGrattan, Hostikka, Floyd, McDermott, & Vanella, 2022).
Each record is defined using namelist formatted records that start with an ampersand & and
terminate with a slash /. Table 1 lists some of the most commonly used namelist groups.

Page 2 of 11

Table 1 Frequently used Namelist Groups

Namelist Description Usage
CTRL Control Function

Parameters
Define control logic to trigger events during the simulation.

DEVC Device Parameters Extract useful information from the simulation.
MESH Mesh Parameters Define the spatial bounds of the model
OBST Obstruction Define the geometry needed for the model.
REAC Reaction Parameters Define how combustion works in the model.
SURF Surface Properties Define boundary conditions such as materials, burners, and

exhaust.
TIME Simulation Time Define the temporal bounds of the model.
VENT Vent Parameters Define regions where surface conditions are applied.

Each namelist has different parameters that can be defined. For example, the code in Figure 1 below
defines a small burner in a room. Line 1 defines the spatial bounds, 6.096 m (20 ft) by 3.658 m (12
ft) and 2.438 m (8 ft) high. Line 2 states that the simulation should run for one minute. Finally, lines
3 through 5 specify a 1000 kW propane fire in a square 1.5 m2 burner on the floor.

1 &MESH XB= 0.000, 6.096, 0.000, 3.658, 0.000, 2.438, IJK=41,24,16/
2 &TIME T_END=60/
3 &REAC FUEL='PROPANE'/
4 &SURF ID='BURNER', COLOR='RED', HRRPUA=666.67/
5 &VENT XB= 0.638, 1.862, 1.138, 2.362, 0.000, 0.000, SURF_ID='BURNER'/
Figure 1 SimpleBurner.fds

Challenges in Reading FDS Code
The challenge with the code in Figure 1 is that it is not immediately apparent how big the burner is
or how large the fire is. As a reviewer, to verify the inputs are correct, the area (𝐴) must be
calculated as seen in equation 1, Next, the area is multiplied by the heat release rate per unit area
(HRRPUA, or 𝑞") to determine the total heat release rate (𝑄) as seen in equation 2.

𝐴 = (𝑥𝑚𝑎𝑥 ― 𝑥𝑚𝑖𝑛) ∗ (𝑦𝑚𝑎𝑥 ― 𝑦𝑚𝑖𝑛) = 1.224 𝑚 ∗ 1.224 𝑚 = 1.5 𝑚2 eq. 1

𝑄 = 𝑞"𝐴 = 666.67
𝑘𝑊
𝑚2 ∗ 1.5 𝑚2 = 1000 𝑘𝑊 eq. 2

In addition to determining the fire size, the resolution of the mesh is not immediately apparent, nor
is it easy to determine if the cells are uniform in each direction. The IJK parameter on line 1 tells the
user that the model has 41, 24, and 16 cells in the x, y, and z directions, respectively. To determine
the resolution, divide the extent of the mesh by the number of cells in that direction, which results
in a cell size of 0.15 m in each direction.

While some users put comments in the FDS input files, there is no guarantee that the comments
accurately reflect the records. Additionally, users often leverage tools to generate their fire models.
These tools range from spreadsheets and programming scripts to dedicated graphical user
interfaces. While these tools may contain additional documentation of the decisions made during
model development, they may not be available to a reviewer. Furthermore, spreadsheets and
programming scripts might not be reusable on different projects depending on how they were
developed. xFDS allows these decisions to be documented in the master file that generates
scenarios.

Page 3 of 11

USING TEMPLATES TO GENERATE FDS FILES
Templates are files that contain placeholders where values can be substituted at compilation time.
For example, the code in Figure 2 defines the heat release rate per unit area (HRRPUA). It requires
two variables to be defined: hrr and area. This syntax allows the user to define the desired heat
release rate and the burner area to ensure that the HRRPUA is calculated correctly without
requiring external tools. The variables can be defined in the template or a configuration file that
describes one or more scenarios to generate. Both these techniques, as well as how to render the
templates, are described in the sections below.

1 &SURF ID='FIRE', HRRPUA={{ hrr / area }}/
Figure 2Defining HRRPUA with Variables

WRITING A FDS TEMPLATE

Defining and using variables
xFDS uses the Jinja templating system (Pallets Project, 2022) for generating models. Variables are
defined using curly braces and percent signs along with the set keyword as follows: {% set
<variable> = <value> %}. A set of double curly braces {{ <variable> }} is used to indicate
where text should be replaced. Lines 1 and 2 in Figure 3 define the hrr and area variables for
calculating HRRPUA. This method clarifies to the reader that the heat release rate should be 1000
kW over a 1.5 m2 area. On line 3, the double curly braces tell xFDS to use the hrr and area
variables to calculate the value for HRRPUA. This code would generate the FDS record on Line 4 of
Figure 1. Variables can also be defined in a configuration file, as described later in this report.

1 {% set hrr = 1000 %}
2 {% set area = 1.5 %}
3 &SURF ID='FIRE', COLOR='RED', HRRPUA={{ hrr / area }}/
Figure 3 Setting Variables to Calculate HRRPUA

Reusing code by Defining Macros
The Jinja templating system allows users to define macros that produce a set of FDS records. The
syntax for defining a macro is {% macro <macro_name>(parameters) %}<macro body>{%
endmacro %} as seen in Lines 1-4 of Figure 4. This macro takes x, y, and z locations followed by a
unique name for that location. The visibility and temperature devices are generated every time the
macro is called.

The tenability macro is called on lines 7-8 with different x coordinates and names. The output for
these lines is seen in Figure 5. Note how the elevation of the devices is specified on line 6 of Figure 4
as 6 feet above the floor. This line uses a filter called convert, which takes the value 6 and says the
value was specified in feet and xFDS needs to be converted to meters.

Page 4 of 11

1 {% macro tenability(x, y, z, name) %}
2 &DEVC ID='VIS_{{ name }}', XYZ={{ (x, y, z)|xyz }}, QUANTITY='VISIBILITY'/
3 &DEVC ID='TMP_{{ name }}', XYZ={{ (x, y, z)|xyz }}, QUANTITY='TEMPERATURE'/
4 {% endmacro %}
5
6 {% set z = 6|convert('ft', 'm') %}
7 {{ tenability(0, 0, z, "Point_1") }}
8 {{ tenability(1, 0, z, "Point_2") }}
Figure 4 Defining Macros in a Template

1 &DEVC ID='VIS_Point_1', XYZ= 0.000, 0.000, 1.829, QUANTITY='VISIBILITY'/
2 &DEVC ID='TMP_Point_1', XYZ= 0.000, 0.000, 1.829, QUANTITY='TEMPERATURE'/
3 &DEVC ID='VIS_Point_2', XYZ= 1.000, 0.000, 1.829, QUANTITY='VISIBILITY'/
4 &DEVC ID='TMP_Point_2', XYZ= 1.000, 0.000, 1.829, QUANTITY='TEMPERATURE'/
Figure 5 Output from Calling a Macro

Using Loops to Generate Items
Another way to quickly generate many records is to use a loop. The syntax for iterating through a
loop is {% for <variable> in <iterable> %}<records>{% endfor %} where the iterable is
a list of values or a function that generates values. Loops can also be nested. Figure 6 demonstrates
creating slices for two different quantities at three different elevations. As seen in Figure 7, there
are 6 different slices defined corresponding to each elevation and quantity.

1 {% for z in [3, 6, 9] %}
2 {% for qty in ['TEMPERATURE', 'VISIBILITY'] %}
3 &SCLF PBZ={{ z }}, QUANTITY='{{ qty }}'/
4 {% endfor %}
5 {% endfor %}
Figure 6 Generating Slices with Loops

1 &SCLF PBZ=3, QUANTITY='TEMPERATURE'/
2 &SCLF PBZ=3, QUANTITY='VISIBILITY'/
3 &SCLF PBZ=6, QUANTITY='TEMPERATURE'/
4 &SCLF PBZ=6, QUANTITY='VISIBILITY'/
5 &SCLF PBZ=9, QUANTITY='TEMPERATURE'/
6 &SCLF PBZ=9, QUANTITY='VISIBILITY'/
Figure 7 Slices Generated by Loops

Conditional Rendering
The last major advantage of using a template is enabling and disabling certain records based on
variables. The syntax for an if statement is {% if <condition1> %}
<records_if_condition1_is_true> {% elif <condition2> } %<records_if_
condition2_is_true> {% else %}<default records>{% endif %}. The elif block is
optional, but the template can also support multiple elif blocks.

Figure 8 shows how different fires can be selected depending on the value of the room variable. For
example, if the configuration specifies three scenarios, one for each room, this one section in the
template ensures the correct design fire is used for each model.

Page 5 of 11

1 {% if room == 'Room 1' %}
2 &VENT SURF_ID='FIRE', XB=.../
3 {% elif room == 'Room 2' %}
4 &VENT SURF_ID='FIRE', XB=.../
5 {% else %}
6 &VENT SURF_ID='FIRE', XB=.../
7 {% endif %}
Figure 8 Using If Statements to Render Correct Fire Location

GENERATING MULTIPLE MODELS FROM A TEMPLATE
xFDS is a command line utility that leverages the template system. A configuration file must be
specified to generate models from a template. The configuration file needs to be called pbd.yml,
written in YAML syntax (The YAML Project, 2021), and at the root of the fire modeling project along
with the modeling template. The xfds render command identifies the configuration file and
renders all specified models within the project. The configuration file is required even if there is
only a single model. Figure 9 shows the minimum amount of information needed to render the
template. The name parameter tells xFDS how to name all the output files, while the files parameter
tells xFDS all the files to use for the model. In this example, the configuration tells xFDS that there is
a template file called simple_atrium.fds, and the basename of the output file should also be
simple_atrium. xFDS adds the file extension based on the input file. The reason for this is made
apparent in the Running FDS Files on a section below.

1 xfds:
2 render:
3 - name: simple_atrium
4 files:
5 - simple_atrium.fds
Figure 9 Minimal xFDS Configuration File

Specifying Variables and Parameters
Variables used in the template file can be specified under the variables keyword, as seen in lines
6-8 in Figure 10. Any variables defined in this section are available in the template file but are not
used to generate additional scenarios. In contrast, variables specified under the parameters
keyword tell xFDS what scenarios to generate. For example, on lines 9-11 in Figure 10, two
parameters are specified: cfm representing the total exhaust capacity for an atrium, and mua_perc,
which specifies the percentage of the total exhaust to be supplied by makeup air. xFDS produces 12
output files, as seen in Table 2, to cover the three exhaust rates and four makeup air percentages.
Note how the parameters are also used in the name field to tell xFDS how to name each model.

Page 6 of 11

1 xfds:
2 render:
3 - name: simple_atrium_{{ cfm }}_{{ mua_perc }}
4 files:
5 - simple_atrium.fds
6 variables:
7 hrr: 1000 # kW
8 area: 1.5 # m
9 parameters:
10 cfm: [100000, 125000, 150000] # cfm
11 mua_perc: [0, 85, 90, 95] # %
Figure 10 xFDS Configuration File Specifying Scenarios

Table 2 List of Models Generated by xFDS

Model Name Exhaust Capacity Makeup Air Percentage
simple_atrium_100000_0.fds 100,000 cfm 0 %
simple_atrium_100000_85.fds 100,000 cfm 85 %
simple_atrium_100000_90.fds 100,000 cfm 90 %
simple_atrium_100000_95.fds 100,000 cfm 95 %
simple_atrium_125000_0.fds 125,000 cfm 0 %
simple_atrium_125000_85.fds 125,000 cfm 85 %
simple_atrium_125000_90.fds 125,000 cfm 90 %
simple_atrium_125000_95.fds 125,000 cfm 95 %
simple_atrium_150000_0.fds 150,000 cfm 0 %
simple_atrium_150000_85.fds 150,000 cfm 85 %
simple_atrium_150000_90.fds 150,000 cfm 90 %
simple_atrium_150000_95.fds 150,000 cfm 95 %

Adding Information to Scenarios
Sometimes it is advantageous to add information to specific scenarios without having to add a new
parameter to the models. For example, when the makeup air percentage is 0%, that might imply
that mechanical makeup air should not be supplied. Instead, doors and windows should be used to
provide the makeup air.

Lines 12-15 of Figure 11 tell xFDS to include open_doors = true when mua_perc = 0. For each
rule specified under the include keyword, xFDS compares the values shared between the include
rule and the parameters (lines 10 and 11) to determine if the rule should be applied. Table 3 shows
how xFDS adds the additional information specified to the scenarios without mechanical makeup
air. These include rules can also overwrite values defined in the variables section.

Page 7 of 11

1 xfds:
2 render:
3 - name: simple_atrium_{{cfm}}_{{mua_perc}}
4 files:
5 - simple_atrium.fds
6 variables:
7 hrr: 1000 # kW
8 area: 1.5 # m
9 parameters:
10 cfm: [100000, 125000, 150000] # cfm
11 mua_perc: [0, 85, 90, 95] # %
12 include:
13 # Open doors if makeup air percentage is 0
14 - mua_perc: 0
15 open_doors: true
Figure 11 Adding Information to Specific Scenarios

Table 3 List of Models Generated by xFDS with Extra Information Added

Model Name Exhaust Capacity Makeup Air
Percentage

Open Doors

simple_atrium_100000_0.fds 100,000 cfm 0 % True
simple_atrium_100000_85.fds 100,000 cfm 85 % -
simple_atrium_100000_90.fds 100,000 cfm 90 % -
simple_atrium_100000_95.fds 100,000 cfm 95 % -
simple_atrium_125000_0.fds 125,000 cfm 0 % True
simple_atrium_125000_85.fds 125,000 cfm 85 % -
simple_atrium_125000_90.fds 125,000 cfm 90 % -
simple_atrium_125000_95.fds 125,000 cfm 95 % -
simple_atrium_150000_0.fds 150,000 cfm 0 % True
simple_atrium_150000_85.fds 150,000 cfm 85 % -
simple_atrium_150000_90.fds 150,000 cfm 90 % -
simple_atrium_150000_95.fds 150,000 cfm 95 % -

Excluding Scenarios
It may not be desirable to generate every possible combination of the parameters specified. For
example, the ductwork in the atrium might not be able to support more than 85% of the exhaust
capacity when the maximum exhaust is specified. Therefore, lines 16-21 in Figure 12 tell xFDS to
exclude scenarios with 150,000 cfm of exhaust and either 90% or 95% of makeup air. As such,
Table 4 shows that these scenarios are no longer generated.

Page 8 of 11

1 xfds:
2 render:
3 - name: simple_atrium_{{cfm}}_{{mua_perc}}
4 files:
5 - simple_atrium.fds
6 variables:
7 hrr: 1000 # kW
8 area: 1.5 # m
9 parameters:
10 cfm: [100000, 125000, 150000] # cfm
11 mua_perc: [0, 85, 90, 95] # %
12 include:
13 # Open doors if makeup air percentage is 0
14 - mua_perc: 0
15 open_doors: true
16 exclude:
17 # Not enough duct area to supply > 90% of cfm
18 - cfm: 150000
19 mua_perc: 95
20 - cfm: 150000
21 mua_perc: 90
Figure 12 Excluding Specific Scenarios

Table 4 List of Models Generated by xFDS with Extra Information Added and Scenarios Excluded

Model Name Exhaust Capacity Makeup Air
Percentage

Open Doors

simple_atrium_100000_0.fds 100,000 cfm 0 % True
simple_atrium_100000_85.fds 100,000 cfm 85 % -
simple_atrium_100000_90.fds 100,000 cfm 90 % -
simple_atrium_100000_95.fds 100,000 cfm 95 % -
simple_atrium_125000_0.fds 125,000 cfm 0 % True
simple_atrium_125000_85.fds 125,000 cfm 85 % -
simple_atrium_125000_90.fds 125,000 cfm 90 % -
simple_atrium_125000_95.fds 125,000 cfm 95 % -
simple_atrium_150000_0.fds 150,000 cfm 0 % True
simple_atrium_150000_85.fds 150,000 cfm 85 % -

RUNNING MODELS WITH XFDS
In addition to generating models, xFDS can help with running fire models. For models that are small
enough to run on a workstation or server where xFDS is installed, the xfds run command can help
run the model under any recent version of FDS. For larger files that need to run on a cluster, xFDS
can assist with generating Portable Batch System (PBS) files.

Running FDS Files Locally
FDS users may have FDS installed on their computers. However, depending on their familiarity with
the software, they may not know what version is installed on their machine or if it matches the FDS

Page 9 of 11

version where they run their production models, which can lead to unexpected errors. Meanwhile,
other users may need access to different versions of FDS depending on each project’s needs.

Docker is a software package for containerizing applications (Docker, 2022). A container is a
standard unit of software that packages up code and its dependencies to run a program in an
isolated environment. There are Docker images available for versions of FDS going back to FDS
version 5.5.3 (Weiße, 2022). The xfds run command takes an FDS input file and runs it in an
isolated container.

To run a model, pass the directory containing the model as an argument to the xFDS run command,
as shown in Figure 13. By default, xFDS uses the latest version of FDS available. However, if a
specific version of FDS is desired, the version can be specified, as seen in Figure 14, which forces
xFDS to use FDS version 6.7.9. The xFDS documentation has more information on options for
running FDS files. (PBD Tools, 2022)

$ xfds run /path/to/directory/with/fds_file
 Figure 13 Running a Model with xFDS Run

$ xfds run -v 6.7.9 /path/to/directory/with/fds_file
Figure 14 Running a Model with a Specific Version of FDS

Running FDS Files on a Cluster
A compute cluster is often required for larger models, and these compute clusters often use PBS
files to submit jobs. The xFDS config file can process multiple template files for a single
configuration by listing them under the files option for the job, as seen on Lines 4-6 in Figure 15.
Both files are processed as templates and placed in the output directory for the simulation. The
base name of each file (file name without the file extension) has the same name specified by the
name parameter on Line 3.

1 xfds:
2 render:
3 - name: atrium_{{cfm}}_{{mua_perc}}
4 files:
5 - simple_atrium.fds
6 - simple_atrium.pbs
7 variables:
8 proc: 20
9 ...
Figure 15 Specifying a PBS file

The PBS file uses the same templating system described above for the FDS files. For example, line 8
in Figure 15 specifies that the model requires 20 processors to perform the calculation. The number
of nodes required can be calculated within the template directly using the floor division (//) and
modulo (%) operators. The floor division divides the number of cores required by the number
available on a single node and rounds down to the nearest integer. At the same time, the modulo
operator determines how many cores are required once other nodes are filled. These calculations
are shown in Table 5, while Lines 1 and 2 of Figure 16 show how these calculations can be
implemented. xFDS also makes the name parameter (Line 3 of Figure 15) available to the templates,
as seen on Lines 3 and 23 of Figure 16. The output of the relevant lines can be seen in Figure 17.

Page 10 of 11

Table 5 Calculation of Nodes Needed for a Model

Cores Needed Cores Per Node Floor Division
(Cores // Cores Per Node)

Modulo
(Cores % Cores Per Node)

20 12 1 8
20 16 1 4

1 #PBS -l nodes={{ proc // 12 }}:node1:ppn=12:1:node1:ppn={{ proc % 12 }}
2 #PBS -l nodes+={{ proc // 16 }}:node2:ppn=16:1:node2:ppn={{ proc % 16 }}
3 #PBS -N {{ name }}
4 #PBS -S /bin/bash
5 #PBS -m abe
6 #PBS -M xfds@pbd.tools
7 #PBS -j oe
8
9 # load required modules
10 module load fds/6.7.9
11
12 # change to the working directory
13 cd $PBS_O_WORKDIR
14
15 # set MPI variables
16 export I_MPI_PIN=1
17 export I_MPI_PIN_MODE=pm
18 export OMP_NUM_THREADS=1
19 export MPI_PPN=$(($PBS_NUM_PPN / $OMP_NUM_THREADS))
20 export MPI_NP=$(($PBS_NP / $OMP_NUM_THREADS))
21
22 # run fds in parallel
23 mpiexec -np $MPI_NP fds_mpi {{ name }}.fds
Figure 16 Sample PBS Template File

1 #PBS -l nodes=1:node1:ppn=12:1:node1:ppn=8
2 #PBS -l nodes+=1:node2:ppn=16:1:node2:ppn=4
3 #PBS -N atrium_100000_0
...
23 mpiexec -np $MPI_NP fds_mpi atrium_100000_0.fds
Figure 17 Rendered PBS File

CONCLUSION
It takes time for experienced FDS users to understand what the FDS code does, even for simple test
cases like the example shown in Figure 1. For example, the mesh resolution and peak heat release
rate can be determined by interpreting the FDS code, but that takes time and external tools, leading
to copy-and-paste errors. The xFDS templating system makes it easy to understand these values
and performs calculations for the user, which reduces errors and accelerates the fire modeling
process.

Page 11 of 11

REFERENCES
Docker. (2022, August 19). Use Containers to Build, Share, and Run your Applications. Retrieved from

Docker: https://www.docker.com/resources/what-container/
McGrattan, K., Hostikka, S., Floyd, J., McDermott, R., & Vanella, M. (2022). Fire Dynamics Simulator

User Guide. Gaithersburg, Maryland: National Institute of Standards and Technology.
doi:http://dx.doi.org/10.6028/NIST.SP.1019

Pallets Project. (2022, April 28). Template Designer Documentation. Retrieved from Jinja version
3.1.2: https://jinja.palletsprojects.com/en/3.1.x/templates/

PBD Tools. (2022, August 21). Retrieved from xFDS Documentation: https://xfds.pbd.tools/
The YAML Project. (2021, November 15). YAML 1.2. Retrieved from https://yaml.org/
Wade, C., Nilsson, D., Baker, G., & Olsson, P. (2021). Fire Engineering Practitioner Tools: Survey and

Analysis of Needs. Gaithersburg, MD: SFPE.
Weiße, R. (2022, July 25). FDS Dockerfiles. Retrieved from Github: https://github.com/openbcl/fds-

dockerfiles

	ABSTRACT
	Introduction
	Standard FDS syntax Overview
	Challenges in Reading FDS Code

	Using Templates to Generate FDS Files
	Writing a FDS Template
	Defining and using variables
	Reusing code by Defining Macros
	Using Loops to Generate Items
	Conditional Rendering

	Generating Multiple Models from a Template
	Specifying Variables and Parameters
	Adding Information to Scenarios
	Excluding Scenarios

	Running models With xFDS
	Running FDS Files Locally
	Running FDS Files on a Cluster

	Conclusion
	References

