Assessing the Impact of Changes to Guidance on Evacuation from Fire in Multi-Occupancy High-rise Residential Buildings

Gwynne, Spearpoint, Templeton, Arnott, Xie, Nash, Ramsden

Fire and Evacuation Modeling Technical Conference, September 12-14, 2022

Two year, UK-government funded effort to identify how current guidance (Approved Document B) that focuses on physical structure might affect egress performance.

- 24 storey residential block in West London.
- Fire broke out in June 2017.
- 72 fatalities, approximately, 250 survivors.
- Fire caused by electrical fault on fourth storey.
- Fire spread across exterior via cladding / external insulation.

- 24 storey residential block in West London.
- Fire broke out in June 2017.
- 72 fatalities, approximately, 250 survivors.
- Fire caused by electrical fault on fourth storey.
- Fire spread across exterior via cladding / external insulation.
- Delayed evacuation.
- Delayed revocation of stay put policy.

https://www.bbc.co.uk/news/uk-40301289

https://www.grenfelltowerinquiry.org.uk/phase-1-report

- Mostly, physical design measures affect means of escape appear in building guidance.
- Design measures might be specifically for fire safety but also for other reasons; e.g. acoustics, energy use, access provisions, structural requirements, living arrangements, etc. These might have unintended consequences) on performance.

indow depend Belgi w Address and the second Section over Westindepress #m-evacantics Reception × 10 Environmentary service ser-12 11/1906 whether the state of the state 2 2 4 ž. and blacks Attributes deemed to affect There is an advantage Detertion mechanism, multi-sensor devices, kondion / spacing of devices. performance. wainfardeng/ tourse 2 rated or Design versame Heat, smoke, carbon monoxide (CO); other combustion gases, visual, flame, odeur, sound Right and 4 Pre-evacuation Evacuation mountment Mitigation Migdle a Destatation Desparatory MayHadley / PERMIT Recognition Physical trevel gnition Smoke spread actions actions route Month and and spread physical. selection. **RATIONALS** Reportion - 2 6 3 and the 2 and a source 1 Automatic fire and smoke detection is a substitute / enhancement to the ability of people to become aware of the likely presence of line. Automatic detection can increase the likelihood of successful fire suppression, escape Impact summary and survivability, but this may not always be the case. Type of detector in terms of the sensic's and processing algorithms can aber the effect series.

THE UNIVERSITY of EDINBURGH School of Engineering

Task A1_1: Review physical design measures supporting building evacuation

• Guidance documents and standards reviewed

Document short form	Primary jurisdiction / country	Full document title	Limits
ADB	England	Approved Document B Volume 1: Dwellings (2019)	Limited to common building situations
STH	Scotland	Building Standards Technical Handbook: Domestic (2019)	Only suitable up to 60 m
BS 9991	UK	BS 9991 Fire Safety in the Design, Management and Use of Residential Buildings (2015)	Buildings taller than 50 m should include a qualitative design review (QDR) to BS 7974 and consider performance- based evidence of solutions
NFPA 101	USA	NFPA 101 Life Safety Code (2021)	No limit
C/AS2	New Zealand	Acceptable Solutions for Buildings (2019)	Only suitable for buildings up to 20 storeys, 85 m
IBC	USA ('International')	International Building Code (2018)	No limit
NBC	Canada	National Building Code of Canada (2015)	No limit
NCC	Australia	National Construction Code Volume One, Building Code of Australia (2019)	No limit

• Tall building trigger heights

Document	Trigger Height 1	Trigger Height 2	Trigger Height 3
ADB	18 m	30 m	50 m
STH	18 m		
BS 9991	18 m	30 m	50 m
NFPA 101	18 m	23 m	51 m
C/AS2	10 m	25 m	
IBC	18 m	37 m	50 m
NBC	13 m	25 m	
NCC	17 m	25 m	

Task A1_2: Review regulations and guidance. Obj. A1-3: Current trends in residential buildings

- Interviewed 16 people in 12 one-hour sessions types of practice, building designs and expectations.
- Review of recent articles in trade publications and the media

Impact on building evacuation

- Appropriateness of 'stay-put'
- Resident engagement
- Increase in amenity spaces
- Modern methods of construction
- Investor confidence
- Resident demographics

- Derived resident decision-making process from behavioural statements – things learned from research literature.
- Simple model to structure elements and inform scenario design and evacuee response (e.g. given information available).

- Participants recruited through Prolific Academic (N = 769)
- o Inclusion criteria
 - Participants had to be over the age of 18
 - Must currently live in a high rise of 6 or more stories
 - Must have fully completed the survey
 - o Must pass survey attention check
- 8% of participants stated they had some form of health condition

Obj. B2-2: Resident decisionmaking

- Overall, 90% of participants stated they understood what actions were expected of them in the event of a fire.
 - However, only 59% believed 'staying put' would keep them safe
 - Only 21% felt that staying put was safer than evacuating.
- What influenced decisions to stay put?
 - 81 % wanted to evacuate immediately
 - 37% stated they would not want to stay put at all
 - 86% would follow others
 - 98% would follow guidance
 - 99% would follow instructions from FRS
- If participants were aware of a fire in the building
 - 86% would evacuate immediately
 - 51% would be reluctant to stay in place
 - 29% would wait for further information
 - 90% would not continue as normal
 - 92% would prepare to evacuate

Obj. A2: Proposed exemplar building and model selection

A GHD controls

• Building geometries

Obj. A2: Proposed exemplar building and model selection

Building height	Relevant ADB design implications	
11 m	The height at which a sprinkler system should be provided in new building construction; and The minimum period of fire resistance is increased to 60 min from 30 min.	 Amenity spaces Warning systems
18 m	The height at which it is recommended to include a firefighting shaft; and The minimum period of fire resistance is increased to 90 min.	• Lifts
30 m	The minimum period of fire resistance is increased to 120 min.	 Smoke management
50 m	n/a	

• Model A : Evacuationz

Obj. A2: Proposed exemplar building and model selection

• Model B : Pathfinder

arameter		0	ption A	Option B	Option C	Option D	Parameter		Option A	Option B	Option C	
			Event para	meters					Оссира	nt parameters		
10	Time of day	Da	ау	Evening	Night	-	10	No. of residents	Baseline case	Distribution	-	
1e Impac Weat	Impact on Res	sponse Ba	aseline case	Baseline	P-E↑↑	↑ ↑ -						
	Weather Cond	ditions Pla	leasant	Inclement	-	-			Maximum			
2e /	Impact on Res	sponse Bo	aseline case	P-E↑	-	-	20	No. of visitors	Baseline case	None	-	
				TS↓								
	Fire location	Lo	ower	Mid	Upper	-			Maximum			
Зе	Impact on Res	sponse Po	opulation potentially af	fected by fire and evacuation	procedure		30	Demographics	Optimistic	Representative	-	
	Fire impact	Fla	Flat of origin (FToO)	Floor of origin (FRoO)	Stair	-		Impact on Response	Baseline	P-E↑	-	
	Impact on Res	sponse Ba	nse Baseline case	TS↓↓ (FToO/ FRoO)	TS↓↓	-				TS↓		
	1				(FToO/FRoO/		40	Population location	In flats	Flats / amenity spaces	-	
		TS	S↓↓ (FToO)	RA↓ (FToO/ FRoO)	AdiStair)			Impact on Response	Baseline	No occupant in	-	
					.,,					communal space will be		
		P-	-E↓↓ (FToO)	RU↓ (FToO/ FRoO)	RA↓					asleep (P-E \downarrow)		
4e					(FToO/FRoO/							
					AdiStair)					OT个 (e.g., return to flat)		
					/ lajotan /				Affects sub-popula	ions exposed to smoke conditions		
1b	Building he	ູບ	গ্ৰহুল হয়	ST Pitture		lencies fre-Exacustion Times (2)						
		- ÚM BŞ	perinment		ฟอ	ie:-:	Tane/Dell		Petisian	େମ୍ବ	Shielan i	
2b	No. of Stair	1		25 selenoras	24	368% I		1	1962/013	-3.44% I	11,465	
	Impact on I	a second second		2XX22p2		399,9			ostatel.	2/2009	,÷P 0L£	
3b Stair width		n ku kasali na sal		Seven krs.	123:1		51756	16 AM	# 754	4.7667		
46	Constitution			12123	1998		15,1024		1.690	3.675	1,231	
4b Corridor ler			l autom		2.20		363		4.00	4.755	3.52	
5b Amenity sp		a san kana sa sé sa sé		216 K 21			26.3		1.49.	1.39	1.49	
10	Means of w	Umimpetred		4.1.1.1.1.1		5 (5-4)		47.43				
-14	Impact on		- 約45				1,20		90	50 L	(A)	
2p	Evacuation Impact on I											
3р	Evacuation Impact on I											

Obj. A2: Scenario variables

C

Conclusions / Ongoing Work

- Quantify impact of means of egress (as shaped by current guidance), on evacuation performance from residential towers.
- Using performance-based tools to assess prescriptive guidance. Luxury of research support.
- Will continue modelling the evacuation across the scenarios generated using the Evacuationz and Pathfinder tools.
- Will derive insights from the survey results to establish resident perceptions of current and future guidance options to provide insights into possible uptake of future guidance.
- Complete modelling activities to allow quantitative comparisons between intervention strategies / design options to be made.
- Likely completed by end of 2022.

