

Fire and Evacuation Modeling Technical Conference

September 12-14 2022 Brno, Czech Republic Evacuation modelling – benchmark analysis of input parameter sensitivity of simulation software

Presented by Quentin JULLIEN

- 1. Context
- 2. Experiment setup
- 3. Sensitivity analysis
 - i. General sensitivity analysis
 - ii. Sobol's sensitivity indices
- 4. Conclusions and perspectives

- Complexity of modern infrastructure, size of crowds
- ➤ ... need for new tools

- No international standard, only guidelines in different countries
- In France, regulations are mainly prescriptive

 However, context (JO24, Rugby 2023) -> changes

CSTB A collaborative approach

¹CSTB 84, Avenue Jean Jaurès, Champs-sur-Marne 77447 Marne-la-Vallée cedex 2, France quentin.jullien@cstb.fr

²EFECTIS France Espace Technologique – Bât. Apollo, Route de l'Orme des Merisiers 91193 Saint Aubin – France virginie.drean@efectis.com

³STUDIO FAHRENHEIT 128 rue la Boétie, 75008 Paris, France camille.lecompagnon@studio-fahrenheit.com

⁴CNPP Route de la chapelle Réanville, 27950 Saint-Marcel nicolas.trevisan@cnpp.com

⁵Université Paris-Saclay, CNRS, Laboratoire de Mathématiques d'Orsay, 91405, Orsay, France bertrand.maury@universite-paris-saclay.fr

⁶LCPP 39bis Rue de Dantzig, 75015 Paris jean-luc.paillat@interieur.gouv.fr

⁷Movement Strategies, A GHD Company 10, Fetter Lane, London EC4A 1BR, UK bachar.kabalan@ghd.com steve.gwynne@ghd.com

- Inventory of models
- Appropriate input parameters
- Analysis methodology

PREVIOUS STUDY: DISPERSION OF RESULTS WITH THE SAME COMMON PARAMETERS AND TOOL-SPECIFIC INPUT PARAMETERS SET TO DEFAULT → each tool impacts congestion differently

Objectives:

- Conduct a sensitivity analysis on 3 common input parameters using 4 different egress models
- Study the influence of these parameters on congestion and hence the egress time

Experiment setup

- $S_{floor} \approx 61 \text{ m x } 44 \text{ m}$ $S_{total} = 20 \ 600 \text{ m}^2$
- 8 egress stairs
- 40% of the total accommodation capacity

Occupancy during the drill						
Level 8	133	Level 7	169			
Level 6	193	Level 5	249			
Level 4	218	Level 3	146			
Level 2	0	Level 1	137			
Ground floor	65	Basement	39			

	Pathfinder	buildingEXODUS	FDS+EVAC	Cromosim compartment model
Micro/Macro	Micro	Micro	Micro	Macro
Space representation	Space grid mesh (triangular)	Space grid mesh	Space grid mesh (rectangular)	Network (skeleton of the building)
Agent representation	Cylinder	One agent per cell (0.5 m x 0.5 m)	Ellipsis*	N.A.
Characteristic dimension of agent	Diameter	Cell size	Major axis length	Via door capacities

*: The shape of the human body is approximated by a combination of three overlapping circles.

Parameter	Values	Reference value
Velocity in m/s*	0.6, 0.8, 1.0, 1.2, 1.4	1
Diameter of a person in m	0.40, 0.45, 0.50, 0.55, 0.60	0.5
Premovement time interval in s**	0, [0-5], [0-15], [0-30], [0-60]	0

*: Speed does not follow any distribution and is fixed for all agents. **: Values are attributed to occupants using a uniform distribution over the time intervals.

Sensitivity study

General sensitivity analysis

/ Individual impact of variables on total evacuation time: speed

CSTB

futur en construction

Speed variation (%)

- Two global trends
- Almost linear
- Magnitude varies between tools
 difference in management of staircases & interactions
- Slope steeper for lower speeds (trend I)
- Congestions might disrupt the evacuation
 - Higher speeds → more occupants in the stairwell at the same time
 - Evacuation governed by congestion instead of speed

Individual impact of variables on total evacuation time: agent size

- Sensitivity is low for small diameters → flow through doors near max
- In Cromosim conflicts are managed differently
 sensitivity to agent diameter is low

Individual impact of variables on total evacuation time: agent size

- For FDS+Evac and Pathfinder, high sensitivity for larger diameters (0.5m to 0.6m)
 → higher space requirements
- Increase in agents' size generates congestion in the stairs

View of the Pathfinder simulation with [speed, size]=[1 m/s, 0.4 m] at t=250 s, floor 6, staircase A

View of the Pathfinder simulation with [speed, size]=[1 m/s, **0.6 m**] at t=250 s, floor 6, staircase A

- Low sensitivity (~5%) to premovement time for all tools [0-60] s
- Egress time governed by the flow in the stairs (bottlenecks)
- The delayed occupants will eventually reach the stair that is already jammed

Sensitivity study

Sobol's sensitivity indices

Different kinds of Sobol indices

Influence of speed, agent size and their second-order interactions on evacuation time

Observed result: Evacuation time

- ~80% of egress time variation is due to speed
- Effect of the occupant's speed on the output does not depend on agent's size and vice versa

Sensitivity of the total evacuation time to the speed, premovement time and their interactions

- Influence of speed is predominant (~90% of the variations)
- In Pathfinder, the effect of premovement time or of its interaction with speed is negligible
- Speed and premovement time are independent variables as well

Observed result: Evacuation time

Conclusions & perspectives

- Preponderant influence of speed
 - Congestion limits the egress time for higher speeds
- Micromodels are much more sensitive to size variations than macromodels
- Negligible influence of premovement time within the [0; 60]s interval → Congestions seems to outweigh the delay of premovement time
- Differences in amplitude between tools at doors and merging points (eg staircases)
- Quantification of congestion and knowledge of conflict resolution are crucial
- > The results are valid for the intervals and the case studied

- Modelling of the stairwells
 - Correct way to discretize the space, adjust conflict resolution etc.
- Take congestion into account, not only evacuation time
 - Personal egress efficiency (PEE), individual waiting time...
- Other drills to compare the observations

Thank you for your attention

Acknowledgements:

- o The building hosts
- Fire brigade officers: Paris Fire Brigade & SDIS 39

