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Gas temperatures in enclosure fires

Smaller type 

enclosure

Larger type enclosures

The “compartment fire”



The ”Compartment Fire”

• Advantages

• Calculations are easy to preform

• pre- and post-flashover

• Transparent

• Short computational time

• Well evaluated for certain scenarios
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The ”Compartment Fire”

• Advantages

• Calculations are easy to preform

• pre- and post-flashover

• Transparent

• Short computational time

• Well evaluated for certain scenarios

• Problems

• Approximate results

• Limitations of when the concept can be applied



The ”Compartment Fire”: Limits

• The concept is limited by

... Modell assumptions

... Empirical restrictions

• Example 1: Two-zone models

• Example 2: EUROCODE (EN 1991-1-2)

• Floor area < 500 m2

• Room height < 4 m

Acceptable value Special considerations required

L / W ≤ 3 3 < L / W < 5

L / H ≤ 3 3 < L / H < 6

Acceptable ratios between enclosure depth (L), width (W) and height (H)



• Possible to assume a homogenous 
gas mixture

• Flashover can occur

• Under-ventilated fire

• Fast fire development and 
pressure build up

• Prescriptive fire safety design

• Differences in temperature and 

concentration

• Local flashover, influence of layout

• Openings, leakage

• Slow fire growth

• Performance based design

Compartment fire vs. fire in large enclosure



The ”Compartment Fire” and FSE



Fires in large enclosures

Which tools do we have?

• CFD

• Computational heavy for large volumes

• Two-zone models

• Outside limits of the model

• Hand-calculations

• Few (if any) that are applicable



Fires in large enclosures

One option could be to use a multi-zone approach

• Using the same principles as in a two-zone model; however, the 
volume is divided into more control volumes

• The uniform temperature assumption can to some degree be relaxed

• Main advantage compared to CFD is the reduced computational time



Multi-zone approach

Based on Multi-Layer Zone model presented by Suzuki et al, (2002) and Suzuki et al (2004)



Model evaluation

Published data from five different experimental tests

1. International Fire Model Benchmarking and Validation Exercise #3 (Hamins
et al, 2005)

2. Wall and corner effects on plumes (McGrattan et al, 2018)

3. PolyU fire tests (Chow et al, 2001)

4. Murcia Atrium Fire Tests (Gutiérrez-Montes et al, 2009)

5. Benelux tunnel fire test (Lemaire & Kenyon, 2006)



Model evaluation

• Five non-dimensional variables are used to characterize important 
aspects of each experiment. 

Parameter Tests in large volume enclosures Tunnel test

BE3 NIST corner PolyU Murcia BeNeLux

Dimensionless heat release rate 0.31 1.72/3.44 0.20 1.56 0.21/0.36

Enclosure aspect ratio (L/W) 3.10 1.57 2.04 1.00 85.71

Enclosure aspect ratio (H/W) 0.54 0.54 2.45 0.97 0.53

Flame length ratio 0.59 0.541/0.702 0.08 0.21 0.703/1.534

Equivalence ratio 0.13 0.021/0.042 1.50 0.02 0.033/0.024

Radial distance ratio 3.76 15.02 4.45 6.87 2.09-59.01



International Fire Model Benchmarking and 
Validation Exercise #3

Model evaluation

• Test 3

• 1 MW heptane pan fire

• Seven different TC trees



International Fire Model Benchmarking and 
Validation Exercise #3

Model evaluation
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• Test 3

• 1 MW heptane pan fire

• Seven different TC trees



• Wall and corner effects on plumes 

Model evaluation

• Corner fire

• Natural gas

• 200 and 400 kW fire



• Wall and corner effects on plumes 

Model evaluation
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• 200 and 400 kW

200 kW case



• Wall and corner effects on plumes 

Model evaluation

• Corner fire

• Natural gas

• 200 and 400 kW
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• Wall and corner effects on plumes 

Model evaluation

• Natural gas

• 200 and 400 kW
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Model evaluation

Murcia Atrium Fire Tests

• Test#3

• 2.3 MW heptane pan fire

• Exhaust fans off, natural ventilation



Model evaluation

Murcia Atrium Fire Tests
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• Test#3

• 2.3 MW heptane pan fire

• Exhaust fans off, natural ventilation



Model evaluation

PolyU Atrium test

• 1.7 MW diesel pool fire

• Limited ventilation

• Two TC trees with 20 TCs in each



Model evaluation

PolyU Atrium test
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• 1.7 MW diesel pool fire

• Limited ventilation

• Two TC trees with 20 TCs in each



Model evaluation

BeNeLux tunnel fire tests

• Modelled as a 418 m long tube with a 4.4° uphill slope 

• Width: 9.8 m, height: 5.2 m

MZ model was adapted for tunnel fires:

• Longitudinal ventilation

• Tunnel gradient

• Fire plume
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Model evaluation

BeNeLux tunnel fire tests
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Model evaluation - Conclusion

• MZ predicts gas temperatures within 5-10% of FDS results and within 
10% of the experimental data in the well-ventilated large spaces.

• However, in one case there are larger discrepancy between the experimental 
data and simulation results this was probably due to ventilation conditions

• MZ performed well in regard to the tunnel fire scenario

• The results are promising and there is a future for the multi-zone 

concept; however, further studies are needed in order to quantify the 

accuracy of the model and its limitations

• But the fire dynamics is different in several aspects and more work 

is needed
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