Recent Developments in FDS

Kevin McGrattan National Institute of Standards and Technology Gaithersburg, Maryland, USA

> Jonathan Hodges Jensen Hughes Blacksburg, Virginia, USA

Jason Floyd Fire Safety Research Institute Columbia, Maryland, USA

Time (s)

Actual HRR curve

Typical "t-squared" fire

Alternative Approach:

- Perform cone or similar testing
 - Ignition temperature
 - Post ignition burning rate
 - At ignition apply the measured burning rate from the cone curve closest to the expected exposure
- Pros
 - Relatively simple to define
 - Cone testing is cheaper than full object testing
 - Fire spread
- Cons
 - Cone exposure ≠ predicted exposure

Exposure Scaling

50 kW/m² exposure in cone (blue) 25 kW/m² exposure in cone (orange)

Which curve to use in FDS?

Thickness Scaling

Thin sample (blue)

Thick sample (orange)

Using the orange curve would mean twice the burning duration with the peak HRR delayed.

Inputs on the SURF line

IGNITION_TEMPERATURE at which the wall cell starts burning THICKNESS of solid being modeled RAMP_Q(:) HRRPUA ramp for each cone data set REFERENCE_THICKNESS(:) for each cone data set REFERENCE_HEAT_FLUX(:) Heat flux for each cone data set INERT_Q_REF is true if the cone test performed without oxygen

Verification

- Solid lines data (25, 50, 75 kW/m²)
- Dashed sample color predictions using 50 kW/m² data
- Dashed blue predicts 50 using 25 and 75 kW/m² data.

Simulations of 165 Materials

Mixtures Others Polymers

Wood-Based

Table 3.34: Summary of Materials

Dataset	Mixtures	Others	Polymers	Wood-	Total
				Based	
Aalto Woods	0	0	0	2	2
FAA Polymers	0	0	8	0	8
FPL Materials	0	0	0	8	8
FSRI Materials	0	26	30	15	71
JH Materials	5	1	4	5	15
RISE Materials	37	3	16	5	61
Total	42	30	58	35	165

- Performed modeling for each tested flux without that flux
 - Test at 25, 50, and 75 kW/m²
 - Model 25 using 50 and 75
 - Model 50 using 25 and 75
 - Model 75 using 25 and 50

Single Burning Item (SBI) Test, 6 mm PMMA

SBI Results, 6 mm PMMA, 2 or 4 cm Grid

Detailed Kinetics

S-PYRO using various cone data sets

UMD SBI Spyro

Scaled Railcars

Scaled Railcars

2 doors, 0 windows

doors, 2 windows

Validation fire tests on using the adiabatic surface temperature for predicting heat transfer

Ulf Wickström Robert Jansson Heimo Tuovinen

> Fire Technology SP Report 2009:19

SP Technical Research Institute of Sweden

ъ SP