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ABSTRACT 

Agent-based evacuation model simulations are not suitable for real-time estimates due to their 
complexity and computational demands. Machine learning models allow for the approximation of 
simulations through estimates, creating a metamodel whose outputs can be used in real-time for 
effective decision-making in object safety management. The article presents a case study 
demonstrating the process of training the metamodel on a dataset with seven input features and 
simulations of evacuation model generated by a quasi-random sequence. Among the compared 
machine learning regression models, the ANN metamodel achieved the best results. 

INTRODUCTION 

The current security situation in the world requires a systematic increase in the resilience of high-
occupancy buildings. Simulation of the evacuation process through a numerical model enables the 
optimization of building designs and safety plans to mitigate the negative impacts of emergencies. 
Currently, numerical microscopic agent-based evacuation models prove most used for these 
simulations [1]. They allow for simulating any number of emergency scenarios during the design 
phase, and quantitatively evaluating their impacts, such as required safe egress time (RSET), 
congestion at critical locations, load on evacuation exits, exposure levels to fire effluents, etc. Based 
on simulation outputs, one can proceed to optimize building designs or evacuation plans aimed at 
reducing the adverse effects of emergencies. 
Among the current challenges in enhancing the security of soft targets is the shift of focus toward an 
adequate immediate response by the facility management and subsequently by the relevant 
emergency response teams, based on valid real-time predictions of the evacuation process during an 
emergency, taking into account the current operational conditions of the facility. This task can be 
addressed by deploying Agent-Based Evacuation Model (ABEM) in combination with machine 
learning (ML) models, which are a subset of artificial intelligence (AI) models. ABEM are typically 
stochastic models that utilize the Monte Carlo method, running a series of simulations whose results 
are then statistically processed. In the case of soft targets, due to their high occupancy, the 
computational time for simulations can reach tens of minutes, and with calibration process according 
to current operational conditions, even hours. This computation time renders simulations practically 
unusable for real-time applications. 
ML models have the potential to estimate simulation outcomes in real-time based on a training set of 
simulations and current calibration anonymous data from camera systems, thereby creating a so-
called metamodel, which is an extension of ABEM. The metamodel is then capable of providing an 
immediate prediction of the evacuation process. These predictions can be used by the facility 
manager, security manager, emergency response teams, or other security personnel to increase the 
effectiveness of their response and reduce safety risks. The diagram in Figure 1 summarizes the basic 



idea of deploying the metamodel and places it in the context of evacuation modeling and machine 
learning. 
 

 
Figure 1: A diagram placing the metamodel into the overall context of the potential practical use of 

the system (the green parts are the subject of this work). 

Green parts of this diagram are subject of this article. The diagram as a whole shows the potential of 
integrating ABEM calibration based on long-term data collection from camera systems, a CFD fire 
model (if fire scenario modeling is necessary), and real-time calibration data for input into a machine 
learning metamodel.  

The aim of this article is to test the accuracy of 9 machine learning regression models trained 
on ABEM simulation dataset of complex geometry scenario using the Sobol Lpτ method [2] and 
subsequent Monte Carlo method [3]. The fundamental condition for the functioning of the mentioned 
metamodel is the training of the metamodel on a specific geometry with a specific evacuation 
scenario. Therefore, the work is not aimed at training a general model that can be applied to a wide 
range of tasks. 

STATE OF THE ART 

The possibility of using metamodels as an extension for agent-based models (not evacuation models) 
was tested by Angione [4] on an agent-based social care model called "Linked Lives." The results 
demonstrated the potential for deploying an ML model in the form of a metamodel, with the highest 
accuracy achieved using an artificial neural network (ANN). However, it is important to emphasize 
that each agent-based model utilizes different computational mechanisms, parameter sets, and 
degrees of stochasticity, making it necessary to carefully and independently test each complex agent-
based model for its potential replacement with a metamodel. 
The prediction of outputs from the Pathfinder evacuation agent model was addressed by Deng using 
Gradient Boost (GB), Extreme Gradient Boost (XGB), and Light Gradient Boost models [5]. Other 
algorithms were not tested in this work. Guo introduced a system that includes the prediction of 
RSET, density, and financial costs for potential building renovation. Only the RF algorithm was used 
for the prediction [6]. The prediction of RSET based on evacuation simulations in the Anylogic 
simulator was also addressed by Li's ANN classifier [7]. 
In none of the above-mentioned articles [5], [6], [7] is the pre-evacuation time, a key parameter in 
analyzing any evacuation process, considered. Additionally, these articles do not address the 
stochasticity of simulations, which results in different outcomes for the same set of input parameters 



due to the element of randomness introduced into the inputs and calibration parameters of the model 
[8], [9], [10]. Furthermore, none of the articles provides a detailed comparison of the available 
machine learning algorithms within the context of evacuation modeling tasks. This article adresses 
these mentioned issues. 

METHODS 

In this chapter, the methods used in this article are described as well as generation of simulation 
dataset and dataset used for metamodels training. 

Simulator 

Microscopic evacuation models were created using the simulation tool Pathfinder [11]. Pathfinder is 
an agent-based, stochastic, microscopic simulation tool that is the most widely used globally for 
modeling building evacuations [1]. Agent-based models are characterized by the fact that individual 
persons in the simulation (known as agents) have their own parameters and decision-making 
processes, similar to the real world, which determine their trajectory throughout the simulation. In 
the Pathfinder simulation, it is assumed that an agent can see all exits from the current room and the 
queues at those exits. The agent also knows the distance from these exits to the final destination. 
Based on this knowledge and other calibration parameters (e.g., the preference for a shorter route at 
the expense of longer waiting times in a queue), the agent chooses a path to the exit. This process is 
updated at each time step of the simulation, allowing the agent to change its trajectory if surrounding 
conditions change (e.g., a queue forms, an exit becomes blocked, etc.). 

Dataset Generation 

For generating the simulation dataset, a method for generating quasi-random numbers in a 
multidimensional space using the Sobol sequence, known as LPτ, was employed. This method 
ensures uniform coverage of the interval of each variable, which is advantageous for machine 
learning purposes. The use of this method follows on from previous research published in [12], 
where the training set was created based on a fixed step size for each variable in the set using the 
brute-force method. This approach involved covering all combinations of the training set variables, 
which is computationally very demanding. Utilizing the Sobol sequence, or other similar stochastic 
methods, allows for better testing of the required dataset size for the proper functioning of the 
metamodel in future research, while ensuring an optimal number of simulations is conducted. Based 
on simulation dataset the machine learning dataset is generated with 7 spatial features described in 
Table 1. This dataset is then used for machine learning processes. Dataset includes 100 samples, with 
20 % designated for testing and 80 % for training as part of the cross-validation method described 
below. 
 
Table 1: Set of input features for machine learning dataset. 

Input variable Mathematic form 

Number of Occupants (Nocc) 𝑁𝑜𝑐𝑐 =∑𝑖 

Minimum distance of occupants to exits 
(ExDmin) 

𝐸𝑥𝐷𝑚𝑎𝑥 =
1

𝑆
∑min(‖𝑥⃗𝑘−𝑦⃗𝑗‖)

𝑆

𝑖=1

 

Mean distance of occupants to exits (ExDmean) 𝐸𝑥𝐷𝑚𝑒𝑎𝑛 =
1

𝑆 ∙ 𝑁𝑜𝑐𝑐 ∙ 𝐸
∑∑ ∑‖𝑥⃗𝑘 − 𝑦⃗𝑗‖

𝐸

𝑘=1

𝑁𝑜𝑐𝑐

𝑗=1

𝑆

𝑖=1

 

Maximum distance of occupants to exits 
(ExDmax) 

𝐸𝑥𝐷𝑚𝑎𝑥 =
1

𝑆
∑max(‖𝑥⃗𝑘−𝑦⃗𝑗‖)

𝑆

𝑖=1

 



Minimum distance between occupants 
(OccDmin) 

𝑂𝑐𝑐𝐷𝑚𝑖𝑛 =
1

𝑆
∑𝑄0,05(‖𝑦⃗𝑗 − 𝑦⃗‖)

𝑆

𝑖=1

 

Mean distance between occupants (OccDmean) 𝑂𝑐𝑐𝐷𝑚𝑒𝑎𝑛 =
1

𝑆 ∙ 𝑁𝑜𝑐𝑐

∑∑‖𝑦⃗𝑗 − 𝑦⃗‖

𝑁𝑜𝑐𝑐

𝑗=1

𝑆

𝑖=1

 

Mean walking speed (Vmean) 𝑉𝑚𝑒𝑎𝑛 =
1

𝑁𝑜𝑐𝑐

∑ 𝑣𝑗

𝑁𝑜𝑐𝑐

𝑗=1

 

Output variable Mathematic form 

Mean required safe egress time (RSETmean) 𝑅𝑆𝐸𝑇𝑚𝑒𝑎𝑛 =
1

𝑆
∑𝑅𝑆𝐸𝑇𝑠

𝑆

𝑠=1

 

 
Monte Carlo method is used for simulation. In the context of this work, it involves repeating an 
evacuation simulation with the same inputs (e.g., number of occupants and their distribution) and 
then statistically analyzing the results of the simulation set. For each agent, a pseudorandom number 
is generated in each repetition, which assigns new values to the agents within the calibration 
parameters (e.g., distribution of walking speed, pre-evacuation time, etc.), leading to different results 
in each repetition. The results are then statistically processed after conducting a set of simulations. 
Each simulation was performed in 20 repetitions to capture the stochasticity. 

Machine learning techniques 

The nested k-fold cross-validation method was used for metamodels training. The inner 5-fold cross-
validation is employed to find the optimal hyperparameters of the metamodel. The number of 
iterations for random hyperparameter search was set to 300. The outer 5-fold cross-validation is 
intended for training and testing on the entire dataset and evaluating the performance of individual 
metamodels. The entire nested cross-validation process was repeated 20 times for robust statistical 
evaluation of the results. The metrics used for the evaluation of metamodels are described in Table 
2, where N stands for whole sample, 𝑦̂𝑖  means point estimate of 𝑦𝑖  and 𝑦̅ stands for mean estimate. 
 
Table 2: Evaluation metrics for regression of machine learning metamodels. 

Name Mathematical form Description 

Coefficient of 
determination 

𝑅2 =
∑ (𝑦̂𝑖 − 𝑦̅)2𝑁
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑁
𝑖=1

 
Describes the proportion of variability in the dependent 
variable that the metamodel is able to capture. 

Maximum 
Error 

𝑀𝐸 = 𝑚𝑎𝑥(|𝑦𝑖 − 𝑦̂𝑖|) 

This is an expression of the maximum deviation of the 
metamodel estimate from the training or test data set within 
the cross validation procedure. This metric is important with 
respect to estimating the RSET of a building, which is a safety 
task. For this reason, it is appropriate to check what 
maximum error can be expected from a given metamodel, 
and therefore whether the metamodel can be "trusted" to 
implement follow-up safety measures based on its estimate. 

Mean Absolute 
Error 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑁

𝑖=1

 

This metric describes the average of the absolute deviations 
of the metamodel estimates from the RSET values in the 
dataset (residuals) and is therefore also a key indicator of its 
performance. This metric describes the average of the 
absolute deviations of the metamodel estimates from the 
RSET values in the dataset (residuals) and is therefore also a 
key indicator of its performance. 



 
To test the ability of metamodels to generalize on this type of task, the following machine learning 
regression models were selected: ordinary least squares regressor (OLS), polynomial regressor 
(POLY), k-nearest neighbor regressor (KNN), random forest regressor (RF), Gradient Boost regressor 
(GB), extreme gradient boost regressor (XGB), support vector regressor (SVR), Gaussian process 
regressor (GP), and artificial neural network (ANN). Shapley analysis [13] was used to examine the 
contribution of each feature in the machine learning dataset. 

EVACUATION MODEL DESCRIPTION 

This is a part of the university building B, Faculty of Civil Engineering, Brno University of Technology. 
The classrooms are connected by a corridor equipped with three security grills, located near the 
staircase. The width of the doors in the security grilles is 0.8 meters. The width of the staircase flights 
is 2.8 meters, with a length of 5.25 meters. The height of the staircase steps is 0.16 meters, and their 
width is 0.35 meters. In the central part of the building, there is an elevator, which is not used for 
evacuation and, therefore, will not be included in the model. The classrooms are equipped with 
double doors. Figure 2 shows a bird's-eye view of the ABEM created in Pathfinder, with the 
evacuation ending on the 3rd floor. 

 

 

 

The model assumes that both wings of the classroom doors are open, providing a total door width of 
1.3 meters. The floor contains a total of 8 classrooms, 17 offices, and one meeting room. Some 
classrooms are separated from the corridor by a staircase step. In the model, the evacuation of people 
ends when they leave the staircase flight leading from the landing to the 3rd floor. The geometric 3D 
model of the building was created in Revit Architecture software and subsequently imported into the 
Pathfinder user interface. Based on this, a movement navigation network for agents was then created. 
The floor contains a total of 8 classrooms, 17 offices, and one meeting room. The assumed maximum 
occupancy of the floor is 300 people. 
 

Table 3: Specification of simulation dataset variables. 

Dataset variable Interval 
Number of occupants in sector A 0–229 
Number of occupants in sector B 0–71 
Mean walking speed 0,9–1,4 m.s-1 

GRILLE

S 

Figure 2: Pathfinder evacuation model scheme with sector selection (left) and detail 
of model exit in 3rd floor (right). 



 
Pre-evacuation time was calibrated with log-normal distribution with parameters μ = 2,972 s, σ = 
1,015 s, min: 5 s, max: 120 s. Distribution is based on the publication by Lovreglio [14], [15], which 
is compiled from several datasets related to the evacuation of university lecture halls which 
corresponds to given object. The histogram in Figure 3 shows the variability of RSET across all 
simulations. 

 
Figure 3: Histogram of RSET for all simulations. 

The graph shows that the RSET in simulations ranges approximately from 100 to 280 seconds. It is 
evident that different combinations of the number of people in sectors A and B and the average 
movement speed can lead to results varying by up to 3 minutes. The task of the metamodels will be 
to replicate this variability as accurately as possible. 

RESULTS 

The results of the nested cross-validation for each metamodel are shown in Table 4. All metamodels 
show more or less overtraining, which is typical for machine learning models. Thus, the key will be 
to observe the ability of the metamodels to generalize on test data, not training data. The results show 
that the POLY metamodel cannot generalize on training data. The ANN metamodel achieved the best 
results on the test dataset in terms of all metrics - R2: 0,94, ME: 12,77 s, MAE: 3,81 s. In terms of the 
ANN metamodel's ability to generalize on this type of training data and set of input attributes, the 
prediction results appear to be sufficiently accurate in the context of the evacuation model.  
 

Table 4: Results of nested cross-validation for all 9 tested metamodels based on R2, ME, and MAE 
metrics. 

ML 
R2 ME MAE 

Train Test Train Test Train Test 
OLS 0,85 (±0,01) 0,80 (±0,08) 37,67 (±4,68) 26,67 (±9,61) 6,81 (±0,39) 7,63 (±1,30) 
POLY 0,91 (±0,07) -0,34 (±2,31) 22,16 (±9,89) ≫50 (±≫50) 5,32 (±1,69) 12,42 (±5,45) 
KNN 0,93 (±0,02) 0,87 (±0,06) 23,91 (±5,77) 20,87 (±7,98) 4,75 (±0,46) 6,15 (±1,28) 
RF 0,98 (±0,01) 0,87 (±0,05) 13,41 (±4,36) 22,47 (±6,44) 2,39 (±0,23) 6,05 (±1,51) 
GB 1,00 (±0,00) 0,92 (±0,04) 1,44 (±1,54) 15,88 (±4,32) 0,45 (±0,40) 4,80 (±1,05) 
XGB 1,00 (±0,01) 0,91 (±0,04) 4,00 (±4,44) 17,29 (±5,68) 0,82 (±0,66) 5,04 (±1,13) 
SVR 0,98 (±0,01) 0,86 (±0,23) 10,51 (±2,39) 25,32 (±20,74) 2,13 (±0,46) 4,60 (±1,63) 
GP 1,00 (±0,00) 0,92 (±0,04) 1,21 (±2,91) 20,17 (±10,54) 0,16 (±0,37) 4,46 (±1,24) 
ANN 0,99 (±0,01) 0,94 (±0,05) 8,80 (±1,85) 12,77 (±7,14) 2,17 (±0,46) 3,81 (±0,75) 

 



The graph in Figure 4 describes the distribution of residuals of the best ANN metamodel within 
nested cross-validation, with estimates made on a single test set. The graph shows that the vast 
majority of residuals are distributed in the range of -5 to 5 seconds. This fact once again confirms that 
the errors produced by the metamodel are on the order of a few seconds. 

 

 
Figure 4: Histogram of ANN metamodel residuals. 

In general, it is evident that the evacuation process involves a number of random variables 
(particularly behavioral ones, such as cognitive and decision-making processes), which evacuation 
models cannot capture due to a lack of calibration data. In this context, the errors generated by the 
ANN metamodel on the order of a few seconds are acceptable. The graph in Figure 5 shows the 
contribution of each machine learning dataset feature to the metamodel's estimation 

 
Figure 5: SHAP analysis of feature's contribution to ANN metamodel prediction. 

Features are ordered from top to bottom according to their impact (higher means greater impact). It 
can be observed that the Vmean feature has the highest impact and contributes to RSETmean with a 
maximum of approximately 30 seconds. The second feature is the number of occupants, which is also 
intuitive. Then there is the mean distance between occupants; a lower distance (high density) leads 
to a higher RSETmean, which makes sense since higher density leads to lower walking speeds. As the 
mean distance to the exit increases, RSETmean also increases, with the contribution being a few 
seconds. 



DISCUSSION 

Increasing the resilience of soft target buildings against threats such as fire or armed attacks is a 
current societal issue. This work addresses the topic and aims to explore the potential of utilizing 
machine learning methods and microscopic evacuation modeling to enhance the resilience of soft 
target buildings. These methods allow for efficient management and estimation of the evacuation 
process's development, with the goal of minimizing associated safety risks and the number of 
unexpected situations that need to be addressed during an emergency event. The work has verified 
that the deployment of a metamodel, as an overlay on a microscopic evacuation model, can be 
practically used for real-time decision-making based on local input conditions. 
In the article, the ability of machine learning metamodels to estimate RSET was tested on a case study 
of a real object, based on a set of 7 input features and a simulation dataset. The results showed that 
the task of estimating RSET using machine learning metamodels can be solved with relatively 
sufficient accuracy in this manner. Of all 9 tested metamodels, the ANN metamodel achieved the best 
results in terms of all the metrics used. The aim of the article was to introduce and validate this 
approach to estimating RSET in real-time on a complex structure as a proof of concept. This work 
demonstrated that machine learning models can be a useful tool for real-time estimation based on 
simulations. However, we must be very careful when deploying them in real-world tasks, as this 
caution applies to any evacuation model. This work is a proof-of-concept pilot project and should be 
further expanded with follow-up research, particularly in the area of optimizing the simulation 
dataset in terms of its scope and the machine learning dataset in terms of the selection of input 
variables, with the aim of achieving even more reliable results. 
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