CFD and Evacuation simulations for three railway tunnels. Challenges in case of natural ventilation

J. Ignacio Abad Martínez INCOSA Dr. Zamenhoff, 36 Madrid, 28027, Spain e-mail: <u>iabadm@incosa.es</u> F. Javier Pérez Mas GEOCONSULT Dr. Zamenhoff, 36 Madrid, 28027, Spain e-mail: fj_perez@geoconsult.es

geoconsult INGENIEROS CONSULTORES S.A.U. CFD and Evacuation simulations for three railway tunnels. Challenges in case of natural ventilation

1 – INTRODUCTION AND METHODOLOGY
2 – SIMULATION HYPOTHESIS AND INPUT DATA
3 – RESULTS
4 – CONCLUSIONS

Introduction

Fire test in the Brunsberg tunnel

Fire events in railway tunnels can be catastrophic for different reasons:

- Potential high HRR (depending on the train)
- High number of passengers to evacuate
- Some railway tunnels are considerably old and do not have mechanical ventilation
- Reduced space for the smoke compared to other type of tunnels

IMPORTANCE OF KNOWLEDGE ABOUT RISKS AND MITIGATION MEASURES

	_
	18

	Scenario 1	Scenario 2	Scenario 3
Cross section	89 m ²	53 m ²	53 m ²
Evacuation walkway width	1.26 m	1.60 m	1.73 m
Slope	-1.7%	-1.8%	1.8%

Introduction

Methodology

CFD and Evacuation simulations for three railway tunnels. Challenges in case of natural ventilation

1 – INTRODUCTION AND METHODOLOGY
2 – SIMULATION HYPOTHESIS AND INPUT DATA
3 – RESULTS
4 – CONCLUSIONS

Geometry

Fire characteristics

Boundary conditions

Evacuation parameters

Geometry

Main parameters:

- Cross section of the tunnel
- Height of the tunnel
- Slope
- Distance to Emergency
 exits

Illustrative view of the model of the scenario 1

Fire characteristics

Main parameters:

- HRR considered
- Combustion properties
- Beginning time of the scenario

HRR curve according to Spanish standard IFI

Combustion Property	Value
Chemical formula	C _{5.77} H _{6.25} O _{1.63}
Energy per kg O ₂ consumed	11.900 kJ/kg
Soot yield	0.0602 g/g
CO yield	0.0705 g/g

Polyester properties according to SFPE Handbook

Type of traffic	Maximum HRR	Fire duration
Only passengers' trains	15 MW	1 h
Passengers and Freight trains	30 MW	2 h
Dangerous goods trains	100 MW	2 h

HRR per train type according to Spanish standard IFI

Boundary conditions

Main parameters:

- Walls temperature
- Outdoor temperature
- Pressure difference (wind)

Tunnol	Wall	Air
Turmer	temperature	temperature
Tunnel 1	6.00 °C	-1.68 °C
Tunnel 2	5.95 ⁰C	-1.41 ⁰C
Tunnel 3	5.95 °C	-1.41 °C

Temperatures according to local weather stations for the month of January

Tunnel	Height difference portals [m]	Temp. Difference portals [ºC]	Maximum wind (P95) [m/s]	Total Pressure difference [Pa]
Tunnel 1	41,732	11,72	3,03	24,78
Tunnel 2	-113,79	8,79	3,11	48,96
Tunnel 3	112,55	8,79	3,11	48,49

External wind and pressure difference between tunnel portals

Evacuation parameters

Main parameters:

- Total number of people
- Movement speed
- Population distribution

1•1 _____ • ___

Type of	Relative weight	Horizontal speed (m/s)		Speed on stairs (m/s)	
passengers	(%)	Avg.	Range (uniform)	Avg.	Range (uniform)
Female < 30 yrs.	12%	1.24	0.93-1.55	0.75	0,56-0,94
Female 30-50 yrs.	12%	0.95	0.71-1.19	0.65	0,49-0,81
Female > 50 yrs.	16%	0.75	0.56-0.94	0.6	0,45-0,75
Female PRM 1	10%	0.57	0.43-0.71	0.45	0,34-0,56
Male < 30 yrs.	12%	1.48	1.11-1.85	0.86	0,76-1,26
Male 30-50 yrs.	12%	1.3	0.97-1.62	0.86	0,64-1,07
Male > 50 yrs.	16%	1.12	0.84-1.4	0.67	0,50-0,84
Male PRM 1	10%	0.85	0.64-1.06	0.51	0,38-0,64
PMR 2	-	0.69	0.13-1.29	-	-

Population groups and walking speeds considered

- <u>366666666</u> (#60666666666666) (#

Train considered for the simulations (capacity: 730 p \rightarrow 2 x 365 p)

Evacuation parameters

Additional considerations

- Step to exit the train
- Speed reduction due to smoke
- Start of the evacuation (premovement times)

Step to get out of the train

Speed reduction due to smoke (Fridolf et Al.)

Speed reduction due to smoke and lighting level (Yuki Akikuzi et Al.)

geoconsult

Overview of the scenarios

CFD and Evacuation simulations for three railway tunnels. Challenges in case of natural ventilation

1 – INTRODUCTION AND METHODOLOGY
2 – SIMULATION HYPOTHESIS AND INPUT DATA
3 – RESULTS
4 – CONCLUSIONS

Temperature

	∆Temp
Scenario 1	10ºC
Scenario 2	17ºC
Scenario 3	13ºC

Visibility

	Visibility
Scenario 1	≈ 3 m
Scenario 2	≈ 1.5 m
Scenario 3	≈ 2.5 m

geoconsult

Thermal Radiation

	Radiation
Scenario 1	< 60 W/m²
Scenario 2	≈ 110 W/m²
Scenario 3	< 50 W/m ²

	FED
Scenario 1	0.016
Scenario 2	0.050
Scenario 3	0.020

CFD and Evacuation simulations for three railway tunnels. Challenges in case of natural ventilation

1 – INTRODUCTION AND METHODOLOGY
2 – SIMULATION HYPOTHESIS AND INPUT DATA
3 – RESULTS
4 – OVERVIEW AND CONCLUSIONS

Overview

Absence of mechanical ventilation

Temperature, radiation and FED

Tunnel Geometry

Important reduction on visibility at the evacuation walkways

Less relevant than Visibility. Even more considering the improvements on the onboard materials due to latest standards

Highly relevant parameter. Tunnel size and slope can be comparable in relevance with the fire definition.

Conclusions

(1)

For tunnels with old trains in service, mechanical ventilation necessity has to be analyzed, as it may prevent serious consequences in case of fire

If mechanical ventilation is not possible

Mitigation measures should be considered:

- Low height emergency lighting
- Handrails
- Backlit evacuation signs
- Light beacons at evacuation path

Thank you for your attention

Geoconsultores s.a.u. Incosa investigación y control de calidad s.a.u.

PERÚ 640 Pardo y Aliaga Avenue Office 1102 San Isidro - Lima

COLOMBIA Central Park Bavaria 13#29-39 Street. Block 1 Office 302 y 303 110311 Bogotá SPAIN Dr. Zamenhof 36 Planta baja 28027 Madrid

NICARAGUA Los Robles Hotel Colón 1C Este 1 1/2 C al Sur Casa Nº29 Managua