Convective Heat Transfer from Impinging Flames

Jonathan L. Hodges^a Randall J. McDermott^b

a Jensen Hughes, Blacksburg, VA. **b Fire Research Division, National Institute of** Standards and Technology, Gaithersburg, MD.

Exposure", NIST.

Outline

- + **Background on Convection**
- + **FDS Defaults**
- + **Impinging Jets**
- + **Model Formulation**
- + **Model Validation**
- + **Example Performance-Based Design Application**

2 I Copyright © 2024 Jensen Hughes.

2 | Copyright © 2024 Jensen Hughes. Exposure", NIST.

Default FDS Configuration

- − Result of tangential velocities going to zero
- − Shift from forced convection regime to natural convection regime

Convection

- + Conduction between a moving fluid medium and a solid at different temperatures
- + Physically related to the velocity and thermal boundary layers at the surface
	- − Large Eddy Simulation (LES) models do not fully resolve the boundary layers
	- − Correlations used to relate the free-stream to the sub-grid behavior within the boundary layer

⁴ | Copyright © 2024 Jensen Hughes. *jensenhughes.com* Protection Engineering, 2016.Atreya, A. "Convection Heat Transfer", SFPE Handbook of Fire

Newton's Law of Cooling

- $\dot{q}^{\prime\prime}_{conv}=h(T_s-T_\infty)$
- $+$ Complexity of boundary layer development embedded in the heat transfer coefficient, h

⁵ | Copyright © 2024 Jensen Hughes. *jensenhughes.com*

Impinging Jet Heat Transfer Literature

⁶ | Copyright © 2024 Jensen Hughes. *jensenhughes.com*

Impinging Jet Heat Transfer Based on Impact Velocity

- + Stagnation energy per unit mass, *H*
- + Impact velocity Equivalent velocity if all stagnation energy were kinetic energy
- + Length scale specified by the user (equivalent diameter in this work)
- + Nusselt relationship based on Martin
- + Properties for Re at the nozzle temperature (ambient in this work)
- + Properties for Nu at the film temperature

JENSEN HUGHES

$$
U_{\rm imp} = \sqrt{2H}
$$

 $H \equiv |\mathbf{u}|^2/2 + \tilde{p}/\rho$

$$
\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}}))
$$

 $D = \sqrt{4A/\pi}$

$$
Nu = 0.021 \times Re^{4/5} Pr^{1/3}
$$

$$
\text{Re}_{\text{imp}} = \frac{\rho_{\infty} U_{\text{imp}} D}{\mu_{\infty}}
$$

$$
h = \frac{k_{\text{film}}}{D} \text{ Nu}
$$

Model Validation

- + **Non-Reacting Hot Jet**
- + **Fire Impinging on Unconfined Ceiling**
- + **Fire Impinging on Corridor Ceiling**

g is copyright © 2024 Jensen Hughes.
 dependent of Steel Beams under Localized Fire the component of the component of Steel Beams under Localized Fire Exposure", NIST.

Non-Reacting Hot Jet (Martin)

Non-Reacting Hot Jet (Martin)

- + Agrees well with existing correlations
- + Some grid dependence, particularly at the higher Re number (40 m/s)

¹¹ | Copyright © 2024 Jensen Hughes. *jensenhughes.com*

Fire Impinging on an Unconfined Ceiling Experiments (Wasson) JENSEN HUGHES NUST

- Propane sand burner, 0.3 m square
- + Adjustable ceiling height
- + Measured total heat flux at impinging point
- + Estimated split between convection and radiation

Wasson, R. (2014). Separation of the Heat Transfer Components from Diffusion Flames Impinging onto Ceilings. Virginia Tech.

+ 90 kW fire impinging on ceiling 0.64 m above top of burner

Fire Impinging on an Unconfined Ceiling Experiments (Wasson) JENSEN HUGHES NUST

Fire Impinging on a Corridor Ceiling (Lattimer)

15 | Copyright © 2024 Jensen Hughes. **Jensen Aughes. J. Lattimer, B. Y., Mealy, C., & Beitel, J. (2013). Heat Fluxes and Flame Lengths from** Fires Under Ceilings. Fire Technology, 49(2), 269–291.

Fire Impinging Heat Fluxes

Example Performance-Based Design Application

+ Model thermal response of an unprotected steel member using a lumped capacitance model (Eurocode Method)

$$
\frac{dT_s}{dt} = \left(\frac{F}{V\rho_s c_{p,s}}\right) \cdot \left[h(T_{AST} - T_s) + \sigma \varepsilon_r (T_{AST}^4 - T_s^4)\right]
$$

 F : exposed surface area per unit length V: volume of steel per unit length T_{AST} : exposure temperature, adiabatic surface temperature in this work ε_r : : resultant emissivity, 0.7 for steel

Example Performance-Based Design Application

- **Configuration**
	- − AISC W24x192 member
	- − Exposed to 8 corridor ceiling cases for 3 hours
- + Results
	- − Section temperature 100-200°C using impinging jet model
	- − Failure criteria exceeded in all exposures with impinging jet model

Design with default model potentially non-conservative.

Conclusions

- Impinging jet model more accurate than default convection relationships on cases studied
- + Some systematic differences between the two data sets, possibly due to experimental variability
- + Additional work needed to expand the validation basis, evaluate different fire diameters, and explore realistic fuel packages
- + FDS users may need to consider using the impinging jet model in evaluating structural fireproofing since default may be nonconservative

Jonathan L. Hodges, PhD Director of Advanced Modeling Jensen Hughes, RDT&E jhodges@jensenhughes.com

Randall J. McDermott, PhD Research Scientist National Institute of Standards and Technology randall.mcdermott@nist.gov

