Convective Heat Transfer from Impinging Flames

Jonathan L. Hodges^a Randall J. McDermott^b

 ^a Jensen Hughes, Blacksburg, VA.
^b Fire Research Division, National Institute of Standards and Technology, Gaithersburg, MD.

"Behavior of Steel Beams under Localized Fire Exposure", NIST.

Outline

- + Background on Convection
- + FDS Defaults
- + Impinging Jets
- + Model Formulation
- + Model Validation
- + Example Performance-Based Design Application

[&]quot;Behavior of Steel Beams under Localized Fire Exposure", NIST.

Default FDS Configuration

- Result of tangential velocities going to zero
- Shift from forced convection regime to natural convection regime

Convection

- + Conduction between a moving fluid medium and a solid at different temperatures
- + Physically related to the velocity and thermal boundary layers at the surface
 - Large Eddy Simulation (LES) models do not fully resolve the boundary layers
 - Correlations used to relate the free-stream to the sub-grid behavior within the boundary layer

Atreya, A. "Convection Heat Transfer", SFPE Handbook of Fire Protection Engineering, 2016.

4 | Copyright © 2024 Jensen Hughes.

- $\dot{q}_{conv}^{\prime\prime} = h(T_s T_\infty)$
- + Complexity of boundary layer development embedded in the heat transfer coefficient, h

jensenhughes.com

Impinging Jet Heat Transfer Literature

^{6 |} Copyright © 2024 Jensen Hughes.

Impinging Jet Heat Transfer Based on Impact Velocity

- + Stagnation energy per unit mass, H
- + Impact velocity Equivalent velocity if all stagnation energy were kinetic energy $U_{\rm imp} = \sqrt{2H}$
- + Length scale specified by the user (equivalent diameter in this work)
- + Nusselt relationship based on Martin
- + Properties for Re at the nozzle temperature (ambient in this work)
- + Properties for Nu at the film temperature

JENSEN HUGHES NS

 $H \equiv |\boldsymbol{u}|^2/2 + \tilde{p}/\rho$

$$D = \sqrt{4A/n}$$

 $D = \sqrt{\Lambda \Lambda / \pi}$

$$Nu = 0.021 \times Re^{4/5} Pr^{1/3}$$

$$\operatorname{Re}_{\operatorname{imp}} = \frac{\rho_{\infty} U_{\operatorname{imp}} D}{\mu_{\infty}}$$

$$h = \frac{k_{\text{film}}}{D}$$
 Nu

Model Validation

- + Non-Reacting Hot Jet
- + Fire Impinging on Unconfined Ceiling
- + Fire Impinging on Corridor Ceiling

"Behavior of Steel Beams under Localized Fire Exposure", NIST.

Non-Reacting Hot Jet (Martin)

Non-Reacting Hot Jet (Martin)

- + Agrees well with existing correlations
- + Some grid dependence, particularly at the higher Re number (40 m/s)

11 | Copyright © 2024 Jensen Hughes.

Fire Impinging on an Unconfined Ceiling Experiments (Wasson) JENSEN HUGHES NST

- + Propane sand burner, 0.3 m square
- + Adjustable ceiling height
- + Measured total heat flux at impinging point
- + Estimated split between convection and radiation

Test	HRR (kW)	H (m)	h (W/m²K)	<i>q''_{gauge}</i> (kW/m²)	Т (°С)
1	50	0.97	34.8	13.9	296.8
2	50	0.64	36.1	35.7	550.6
3	50	0.49	50.5	56.9	676.5
4	90	1.28	42.0	23.1	396.3
5	90	0.85	60.8	56.3	682.5
6	90	0.64	57.5	75.8	839.4

Wasson, R. (2014). Separation of the Heat Transfer Components from Diffusion Flames Impinging onto Ceilings. Virginia Tech.

+ 90 kW fire impinging on ceiling 0.64 m above top of burner

Fire Impinging on an Unconfined Ceiling Experiments (Wasson) JENSEN HUGHES NET

Fire Impinging on a Corridor Ceiling (Lattimer)

Test	HRR (kW)	H (m)	<i>q̇́g_{auge}</i> (kW/m²)	т (°С)
1	150	1.1	26.4	400
2	200	1.1	39.0	507
3	300	1.1	74.0	736
4	400	1.1	108.6	887
5	100	0.6	31.3	494
6	200	0.6	75.3	800
7	300	0.6	124.3	1026
8	400	0.6	152.5	1144

Lattimer, B. Y., Mealy, C., & Beitel, J. (2013). Heat Fluxes and Flame Lengths from Fires Under Ceilings. Fire Technology, 49(2), 269–291.

Fire Impinging Heat Fluxes

16 | Copyright © 2024 Jensen Hughes.

Example Performance-Based Design Application

+ Model thermal response of an unprotected steel member using a lumped capacitance model (Eurocode Method)

$$\frac{dT_s}{dt} = \left(\frac{F}{V\rho_s c_{p,s}}\right) \cdot \left[h(T_{AST} - T_s) + \sigma \varepsilon_r \left(T_{AST}^4 - T_s^4\right)\right]$$

F:exposed surface area per unit lengthV:volume of steel per unit length T_{AST} :exposure temperature, adiabaticsurface temperature in this work ε_r :resultant emissivity, 0.7 for steel

Example Performance-Based Design Application

- + Configuration
 - AISC W24x192 member
 - Exposed to 8 corridor ceiling cases for 3 hours
- + Results
 - Section temperature 100-200°C using impinging jet model
 - Failure criteria exceeded in all exposures with impinging jet model

Design with default model potentially non-conservative.

18 | Copyright © 2024 Jensen Hughes.

Conclusions

- + Impinging jet model more accurate than default convection relationships on cases studied
- + Some systematic differences between the two data sets, possibly due to experimental variability
- Additional work needed to expand the validation basis, evaluate different fire diameters, and explore realistic fuel packages
- + FDS users may need to consider using the impinging jet model in evaluating structural fireproofing since default may be nonconservative

200 Lattimer 0 175 Wasson -2) (kW m 150 0 125 Predicted *à"_{gauge}* \mathbf{O} 100 O 75 50 Exp. Rel. Std. Dev.: 0.07 25 Model Rel. Std. Dev.: 0.36 Model Bias Factor: 1.09 25 50 75 100 125 150 175 200 Measured \dot{q}''_{gauge} (kW m⁻²)

Jonathan L. Hodges, PhD Director of Advanced Modeling Jensen Hughes, RDT&E jhodges@jensenhughes.com

Randall J. McDermott, PhD Research Scientist National Institute of Standards and Technology randall.mcdermott@nist.gov