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ABSTRACT 

This paper discusses the development of an AI model that can predict the results of Fire Dynamics 
Simulator (FDS) simulations. FDS is a widely used tool for fire safety engineering, but it can be 
computationally expensive. The AI model can greatly reduce the time and cost of running FDS 
simulations by providing fast and accurate predictions of key fire safety parameters such as smoke 
visibility, temperature, and heat release rate. 
 
The paper details the development process of the AI model, including the generation of a database 
of FDS simulation results, the training of the model, and the evaluation of its performance. The 
model was tested on a variety of fire scenarios and shown to achieve high accuracy in predicting the 
results of FDS simulations. 
 
The paper concludes that the AI model has the potential to significantly improve the efficiency and 
effectiveness of fire safety engineering. It can be used to rapidly assess the safety of buildings and 
other structures, helping to ensure that people are safe in the event of a fire. 

INTRODUCTION 

This presentation explores the potential of Artificial Intelligence (AI) to enhance and accelerate the 
process of fire safety design using Fire Dynamics Simulator (FDS) software. FDS, a widely 
recognized tool in fire safety engineering, provides valuable insights into fire behaviour, smoke 
spread, and temperature distribution within buildings. However, running complex FDS simulations 
can be computationally expensive and time-consuming, often requiring significant hardware 
resources and substantial processing time. 
This presentation introduces a novel approach to overcome these limitations by leveraging AI to 
predict the outcomes of FDS simulations. By training an AI model on a comprehensive database of 
FDS simulation results, we aim to achieve faster and more cost-effective predictions of fire 
behaviour. This advancement has the potential to revolutionize the field of fire safety engineering 
by enabling quicker and more efficient design iterations. 
The presentation will delve into the following aspects: 

• The rationale behind using AI for FDS predictions: This section highlights the challenges 
posed by traditional FDS simulations and outlines the benefits of using AI to accelerate and 
streamline the design process. 

• Methodology and training of the AI model: This section explains the data collection and 
preparation procedures, the chosen AI model, and the training process involved in 
developing the predictive AI system. 

• Evaluation and validation of the AI model: This section assesses the accuracy and reliability 
of the AI model by comparing its predictions with actual FDS simulation results. 

• Applications and limitations of AI in fire safety design: This section explores the potential 
applications of the AI model in various fire safety engineering scenarios, as well as identifies 
its limitations and areas for future improvement. 



The ultimate goal of this project is to demonstrate the feasibility and advantages of incorporating AI 
into fire safety design workflows. By harnessing the power of AI, we aim to empower engineers 
with a more efficient and reliable tool for designing safer buildings and mitigating fire risks. 
 

AI ACTIVITIES 

This paper investigates the transient behaviour of localized fires based on limited data sources. 
Specifically, we focus on qualitative analysis of smoke and temperature readings in the context 
of localized fire events. Our aim is to explore the predictive potential of these data in characterizing 
the fire's evolution without relying on a comprehensive set of fire parameters. 
Hypothesis: The patterns observed in smoke and temperature data can be qualitatively analysed to 
provide insights into the transient behaviour of localized fires. 
Requirements: 

• Data sets containing smoke and temperature readings from localized fire events. 
• Methods for qualitative analysis of these data, including visualization techniques and 

pattern recognition. 
Limitations: 

• This study focuses on qualitative analysis, providing insights but not necessarily 
quantitative predictions. 

• The data set is limited to smoke and temperature readings, potentially excluding important 
fire parameters. 

Expected Outcomes: 
• Identification of qualitative relationships between smoke and temperature data and the 

temporal evolution of localized fires. 
• Assessment of the potential for qualitative analysis to contribute to understanding and 

predicting fire behaviour. 
This research will contribute to a better understanding of fire dynamics using limited data sources, 
potentially informing future development of predictive models for fire behaviour. 
 

Training 

The foundation of our AI model relies on a comprehensive database of simulation results generated 
using the Fire Dynamics Simulator (FDS). This database serves as the training data for the AI, 
defining the operational boundaries within which it can generate accurate predictions. The more 
simulations included in the database, the wider the range of scenarios the AI can effectively analyse 
and the more precise its predictions will be. 
The training process is computationally intensive, demanding significant hardware resources. Our 
current system requires approximately one hour of processing time for each simulation added to 
the database. This emphasizes the importance of efficient data management and optimized 
hardware utilization for maximizing training efficiency. 
 

Prediction 

Once trained, the AI model enables near-instantaneous predictions. To perform a prediction, users 
simply input an FDS input file (.fds) containing the specific scenario parameters. This file provides 
the AI with all the necessary information to generate a prediction regarding the fire behaviour, 
including smoke propagation, heat release, and potential hazards. 
This approach offers a significant advancement in fire safety analysis. By leveraging the power of 
AI, we can bypass the time-consuming process of traditional simulations, allowing for rapid and 
efficient hazard assessments in real-time scenarios. Further research will focus on expanding the 



database with diverse fire scenarios, improving training efficiency, and exploring the potential for 
real-time integration with existing fire safety systems. 
 

VARIATIONS IN FDS ANALYSIS 

Geometry and Ventilation: 

A diverse selection of building geometries is considered, encompassing different functional areas 
and structural designs. Ventilation systems investigated include jet fans, supply/exhaust fans, and 
natural ventilation through grids, windows, and openings. The impact of ventilation strategies on 
fire growth, smoke movement, and temperature distribution within the building is evaluated. 

Fire Source and Characteristics: 

A prescribed single-point fire location is assumed, with the fire modelled as a heat surface situated 
within a specific area of the building. The fire is characterized by its Heat Release Rate (HRR) curve, 
which can be customized to represent various fire types and intensities. The study investigates the 
influence of different HRR curves, including variations in total HRR per unit area (HRRPUA), on fire 
behaviour. 

Physical and Numerical Variations: 

The study explores the impact of various physical and numerical parameters on fire simulation 
results. Physical variations include: 

• Sprinkler systems: The presence and activation of sprinkler systems, their impact on fire 
suppression and smoke control. 

• Fire propagation: The modelling of fire spread within the building, considering factors like 
flame impingement, thermal radiation, and fuel availability. 

• Chemical reactions: The simulation of chemical reactions, including soot and carbon 
monoxide (CO) yield, which influence smoke toxicity and visibility. 

• Dynamic geometry: The effects of changes in building geometry over time, such as door 
openings and closures, on fire spread and ventilation. 

Numerical variations explored include: 
• FDS versions: The impact of different Fire Dynamics Simulator (FDS) versions on simulation 

outcomes, considering advancements in model physics and numerical algorithms. 
• Time steps: The influence of different time steps employed in the simulations on accuracy 

and computational efficiency. 
• Turbulence model: The effects of different turbulence models used to simulate turbulent 

flow, which impacts smoke diffusion and fire behaviour. 
• Wall representation: The impact of different methods for representing walls and building 

materials on heat transfer and fire spread. 
• Mesh resolution: The influence of mesh size and density on the accuracy and computational 

cost of the simulations. 
  



DEFINITION OF REFERENCE CASE 

 

 
Figure 1: Representation of the chosen geometry 

as provided by FDS tutorials 
 

Geometry and Discretization  

The staircase geometry is modelled with a 
defined set of horizontal slices at 1.5, 1.7, 1.8 
and 2.0 metres above the ground. Two vertical 
slices are further defined, positioned at the 
centre of the domain, perpendicular to the X and 
Y axes. This allows for detailed analysis of the 
fire behaviour in both horizontal and vertical 
planes. 
 

Ventilation and Mesh 

For this initial study, the ventilation within the 
staircase is not considered. The domain is 
discretized using a mesh with 8 cells per 
dimension, resulting in a total of 8,000 cells. 
 

 

Figure 2: The mesh is made of 8 meshes each of which approximately generates 8000 cells. The 
simulations have been performed on FDS 6.8.0 using 8 cores for each analysis. 

Simulation Parameters 

The simulation was run for a total duration of 1800 seconds (T_END = 1800s). Data was extracted 
and analysed at 300s intervals, covering the time points 300s, 600s, 900s, 1200s, 1500s and 1800s. 

Data Processing 

VTK data conversion was utilized to facilitate the analysis of simulation results. This allows for the 
visualization and further processing of the generated data, providing insights into the fire's 
progression and impact on the staircase environment. 

Variations considered 

For this first AI trained model based on FDS, the decision was to limit the possible variations that 
can be considered into a FDS analysis. In particular only fire locations and area variation is 
considered, as well as the HRR time variation. The fire location variations are reported in Figure 3 
and they provide a mix between different fire locations and area where the fire is actually 
generated. 



 
Figure 3: Variations of fire locations and dimensions withing the staircases. Six different variations 

have been defined by placing fire either at the bottom of the staircase or to the first level. 
 
Figure 4 instead illustrates the 4 different HRR curve which have been used to generate various 
scenario. All these curves have a parabolic start with different value of Talpha. 
 

 
Figure 4: Four different time dependent HRR curve have been defined. These curves represent the time 

variation of the parameter HRRPUA (Heat release rate per unit of area) specified for each of 
the fire surfaces. 

 

 
Figure 5: Out of the 24 variations generated, 22 have actually been used to train the AI, out of these 4 

were used for testing the training. 2 extra analysis have not been provided to the AI and are 
used to validate the AI predictions against real FDS simulations results. 



PREDICTIONS 

The predictions for the current AI structure are defined all over the fluid domain and are able to 
generate a proper result set in VTK to open and visualize in Paraview. The following chapter shows 
some of the comparison between predictions and the actual FDS analysis, comparing them from a 
qualitative point of view. 
 

 
Figure 6: Smoke view transient prediction (right) compared against FDS analysis results (left). AI was 

able to correctly capture the main feature of the simulation as well as the transient 
characteristics of the predictions allow a qualitatively good approximation of the results of 
the FDS analysis. 

 

 
Figure 6: Another variable considered is the temperature that is actually correctly generated by the AI 

(right) when compared to the FDS results (left). 
 



 
Figure 7: Results can be generated also on specific slices of the domain like this image displays. To the 

right it is possible to see the AI prediction while on the left the proper results generated by 
FDS. 

 
The results showed the capability of the AI algorithm to actually correctly detect the main features 
of the simulation, even if some local details may be incorrect. In fact, the time required by the 
smoke to fill completely the staircase has been correctly predicted while it may happen than locally 
AI did not capture vortex or smoke diffusion which made the predictions differ from the results of 
the analysis. 

 

CONCLUSIONS 

This study demonstrates the potential of artificial intelligence (AI) to accurately predict key 
features of Fire Dynamics Simulator (FDS) simulations. The ability to generate a comprehensive 
database of simulations is crucial for training AI models to achieve reliable predictions. Once AI 
models are capable of accurately predicting FDS outcomes, they can be readily expanded to 
generate guidelines for selecting worst-case scenarios. This has significant implications for fire 
safety design and analysis, offering a powerful tool for optimizing fire safety strategies and 
minimizing risks. 
 

FUTURE WORK 

• Handling Large Mesh Sizes: The framework addresses the computational challenges of 
simulating fire behaviour in models with a large number of cells. Methods for optimizing 
mesh generation and reducing computational load for high cell counts are discussed. 



• Incorporating Geometric Variations: The framework allows for the inclusion of various 
geometric variations in the model, such as different building shapes and internal layouts. 
This feature enables a more accurate representation of real-world scenarios. 

• Exploring Ventilation Variations: The framework enables the simulation of different 
ventilation conditions, such as open windows, doors, and smoke exhaust systems. This 
feature allows for the analysis of how ventilation affects fire spread and smoke movement. 

• Accuracy and Output Definition: A clear definition of accuracy measures and output 
parameters is crucial for evaluating the effectiveness of the simulation. The paper will 
outline the specific metrics used to assess the accuracy of the model and the data generated. 

• Optimized Data Output: The output data from the simulation is tailored for efficient 
analysis. The framework focuses on providing only relevant slices of data, reducing the 
overall volume of output while preserving critical information. 
• VTK Format: While offering interactive visualization capabilities, the VTK format 

requires specialized software like ParaView or maybe Pyrosim for analysis. 
• JPG Format: JPG provides flexibility in image processing and sharing, but lacks the 

interactive features of VTK. 


