Al prediction of FDS fire scenarios

RUGGERO POLETTO - CFD FEA SERVICE SRL

FDS SIMULATIONS

FDS - CFD

Standard approach for fire safety. It allows engineering predictions for fire scenarios and provide guidance to users and designers

HARDWARE

FDS simulations can be really expensive in terms of hardware resources. Cloud HPC can help but sometimes simulations can be high demanding/costly

SCENARIOS

Often designers are required to identify the "WORST CASE SCENARIO" which in theory it would require running several scenarios just to identify it

PREDICTIONS

The main goal is generating an instrument that is able to predict the results of a simulations in a matter of seconds instead of hours/days

AI PROJECT GOALS

GUIDELINES

Identification of the worst locations for a fire scenarios inside a building

HYPOTHESIS AND REQUIREMENTS

- Some results transient behaviour
- ➤ Localized fire
- Only smokeView and temperature
- ➢ Prediction accuracy report
- ➤ Qualitative results only

TRAINING

- > Generation of an input database of simulations results to provide to the AI
- \succ The input database defines the boundaries where AI can operate
- \succ The more results are provided for a training the more accurate the prediction can be
- Training process is highly demanding of hardware resources (in our case, 1h per each simulations provided)

PREDICTION

- ➤ It is basically instantaneous
- > Input data for the prediction: FDS input file ".fds"

CLOUD HPC

DATABASE OF SIMULATIONS

OTHER PHYSICAL VARIATIONS

- > Sprinkler
- ➤ Fire propagation
- ➢ Chemical reaction (SOOT/CO YIELD)
- ➤ Geometry variations in time (door opens/closes)
- ≻ ...

OTHER NUMERICAL VARIATIONS

- ➢ FDS versions
- ➤ Time steps
- ➤ Turbulence model
- ➤ Wall representation
- ➤ Mesh resolution
- ≻ ...

DATABASE OF SIMULATIONS

&MESH	ID='Mesh	01',	IJK=14,	8,	72,	XB= 0,2.1,0,1.2,0,6.12/
&MESH	ID='Mesh	02',	IJK=14,	8,	72,	XB=2.1,4.2,0,1.2,0,6.12/
&MESH	ID='Mesh	03',	IJK=14,	8,	72,	XB= 0,2.1,1.2,2.4,0,6.12/
&MESH	ID='Mesh	04',	IJK=14,	8,	72,	XB=2.1,4.2,1.2,2.4,0,6.12/
&MESH	ID='Mesh	05',	IJK=14,	8,	72,	XB= 0,2.1,0,1.2,6.12,12.24/
&MESH	ID='Mesh	06',	IJK=14,	8,	72,	XB=2.1,4.2,0,1.2,6.12,12.24/
&MESH	ID='Mesh	07',	IJK=14,	8,	72,	XB= 0,2.1,1.2,2.4,6.12,12.24/
&MESH	ID='Mesh	08',	IJK=14,	8,	72,	XB=2.1,4.2,1.2,2.4,6.12,12.24/

CHOSEN GEOMETRY

SIMULATION FEATURES

Staircase example provided by FDS Tutorial

SLICES

Set of horizontal slices at 1.5, 1.7, 1.8 and 2.0 metres from the ground. Two vertical slices at the centre of the domain normal to X and Y axes

No ventilation considered

8 MESH with 8,000 cells each

TIME

T_END = 1800s Results monitored at 300s, 600s, 900s, 1200s, 1500s and 1800s

VTK data conversion generated to allow communications

contaceAll(",", " ", a); a = a...a) contaceAll(",", " ", a); a = a...a) contaceAll(" "); } \$("#unique")

R&D ACTIVITY

NAVASTO aerodynamic solutions

- > Proprietary AI software
- > Developed AI to perform pseudo-transient predictions

CLOUD HPC

Developed by CFD FEA SERVICE

- ➢ FDS cases and results setup
- ➤ Computing power provider
- > Developed a converter from FDS to VTK file format

FIRE LOC /ION/AREA

Prescribed **Second** fire location is considered. Fire oplied as a heat surface placed in specific area of the building.

HRR CUR

Shape of the second dassigned to the fire. Variation in terr second HRRPUA can be indirectly depend on the input of the HRR curve through the RAMP option.

PPLIED VARIABILIT

CLOUD HPC

Hoped by CFD FEA SERVICE

FIRE LOCATION/AREA

APPLIED VARIABILITY

HRR CURVE

🔵 F1 📕 F2 📒 F3 📕 F4

APPLIED VARIABILITY

AI TRAINING CASES

https://cloudhpc.cloud info@cloudhpc.cloud +39 378 30 33 133

CLOUD HPC

From the cases defined a total of 22 cases have been used to train the AI - 4 cases are used for testing the training. 2 more cases remained unseen by the AI and were used to test the predictions against real FDS analyses results.

N

- 3.0e+01

- 25 - 20

- 15

- 10

- 5

0.0e+00

SMOKE VISIBILI

CLOUD HPC

Developed by CFD FEA SERVICE

PREDICTION

FDS

EMPERATURE

https://cloudhpc.cloud info@cloudhpc.cloud +39 378 30 33 133

25

PREDICTION

FDS PREDIC

Y

2 2 2 2 *

CLOUD HPC

aveloped by CFD FEA SERVICE

FDS

SMOKE VISIBILI

FDS PREDICTION

FDS PREDICTION

П \leq U 5 :600s RE

П \leq Π 5 RE N **00s**

PREDICTION - 3.0e+01 Prediction - 28 - 26 -24 - 22 2.00+01

YX

Case09: 1

FDS

Case09: 1

PREDICTION **FDS**

X-View

CONCLUSIONS

- → AI can predict the main features of the FDS simulations
- → Generation of a wide database of simulations is fundamental
- → Once predictions are working it can be easily expanded to generate guidelines to choose the worst case scenario

WORK TO DO

- > Managing bigger mesh size (higher cells number)
- Inclusion geometry variation
- Inclusion ventilation variation
- Accuracy report definition
- Actual output to provide Reduce the output to slice only
 - → Which slices?

Provide the output in format easy to read:

- → VTK allows interaction but requires ParaView [**Pyrosim**?!?!]
- → JPG would allow more flexibility but less interaction

THANKS

Does anyone have any questions? Follow CFD FEA SERVICE / CLOUDHPC for updates ...

info@cloudhpc.cloud +39 378 3033133 cloudhpc.cloud

CFD FEA SERVICE

E

 \bigcirc

G