

FIRE&RISK Selection Considerations of Exterior Wall Leakage **ALLIANCE** Values for Smoke Control Systems Design

FEMTC 2024

James Milke, PhD, Senior Principal Engineer Babak Bahrani, Senior Fire Protection Consultant Steven M. Strege, Principal Fire Protection Engineer Jeffrey L. Paterson, Senior Fire Protection Engineer

Outline

- Introduction
- Building Survey Data
- Influence of Building Characteristics
- Summary

Introduction

- Inputs for design analysis of fan capacity for stairwell pressurization systems:
 - Magnitude of leakage associated with building components
 - Location of stairwells
 - Height of building and stairwells
 - Exterior/interior temperatures
 - Area of spaces in building
 - Presence of other shafts
 - Etc.
- Input for leakage of building components provided as leakage ratio:

effective area of leak total surface area of the component

Leakage Rates, Handbook of Smoke Control Engineering (Klote, et al., 2012)

Leakage Category	Leakage Ratio (m ² /m ²)
Tight	5.0x10 ⁻⁵
Average	1.7x10 ⁻⁴
Loose	3.5x10 ⁻⁴
Very Loose	1.2x10 ⁻³

air permeability of air barriers in commercial buildings $\leq 1.27x10-4 \text{ m}^2/\text{m}^2$ [IERC, 2021]

Early Surveys of Leakage Rates

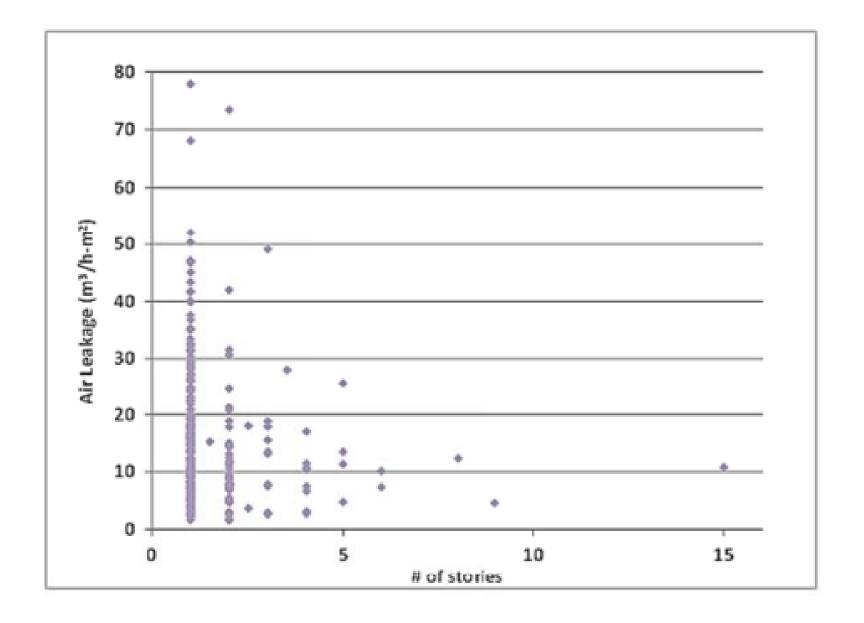
- Tamura and Shaw, NRCC [1976].
 - Experiments in 8 office buildings
 - 11 to 22 stories
 - constructed in 1960s early 1970s
 - all included curtain walls.
- Shaw, NRCC [1993]
 - Follow-up of the 1970's study
 - 6 buildings, 5 of which had renovations to exterior boundary
 - Observed changes in leakage rate
 - In 5 renovated buildings, reduction in leakage rate ranged from 0 to 43%.
 - In building that had not been renovated, leakage rate increased by 23% in the 20 years since it was last tested.

Subsequent Studies

- Emmerich and Persily, NIST, [2011]: Exterior leakage rates did not significantly change from 1960s to 1990s.
- Strege and Ferreira [2017] measured differential pressures in fifteen (15) high-rise buildings in four (4) different cities (Cleveland, Baltimore, Minneapolis, and Philadelphia) during the winter months of January to March 2013.
 - Exterior walls had either fixed glass curtain walls or masonry with fixed windows
 - Leakage of the exterior walls: "loose" category of values in table from Handbook

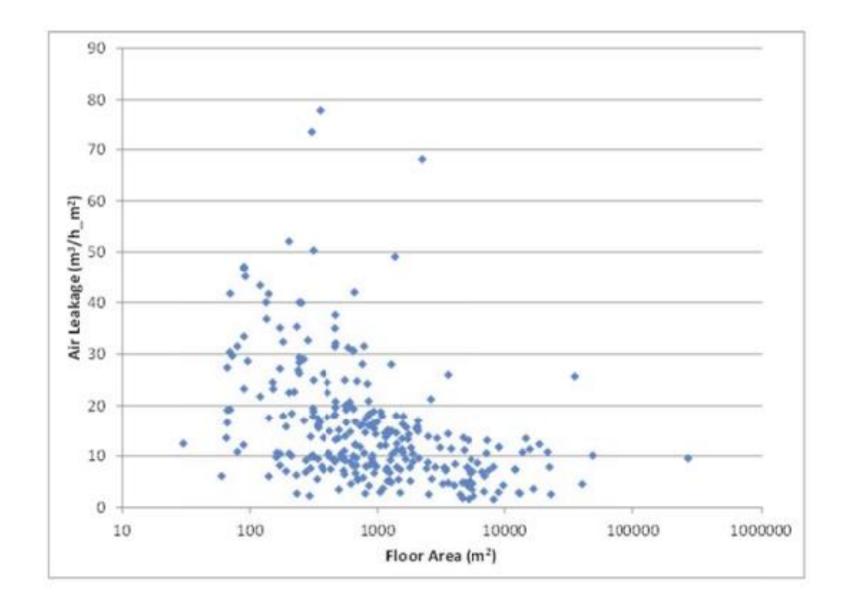
Building Surveys by Emmerish and Persily [2014]

Dataset	Qty	Mean	Standard Deviation	Minimum	Maximum	
2011 Database						
Source 1	9	5.77E-04	4.40E-04	1.49E-04	1.66E-03	
Source 2	89	1.29E-03	8.87E-04	1.53E-04	4.74E-03	
Source 3	39	7.57E-04	6.96E-04	1.03E-04	3.08E-03	
Source 4	88	7.38E-04	3.94E-04	1.30E-04	2.42E-03	
Source 5	3	3.33E-04	7.64E-05	2.45E-04	3.86E-04	
2014 Database						
Efficiency VT	36	3.67E-04	3.94E-04	2.68E-05	1.85E-03	
ASHRAE RP 1478	16	2.68E-04	1.91E-04	5.35E-05	7.80E-04	
Washington	18	4.01E-04	1.57E-04	1.15E-04	6.69E-04	
Other VT/NH	79	5.66E-04	4.13E-04	5.35E-05	1.75E-03	
Other VT/NH	10	3.17E-04	2.45E-04	9.94E-05	8.68E-04	
Summary						
Total-2011	228	9.52E-04	7.30E-04	1.03E-04	4.74E-03	
Total-2014	159	3.78E-04	3.25E-04	2.68E-05	1.85E-03	
Total-all	387	7.45E-04	6.57E-04	2.68E-05	4.74E-03	

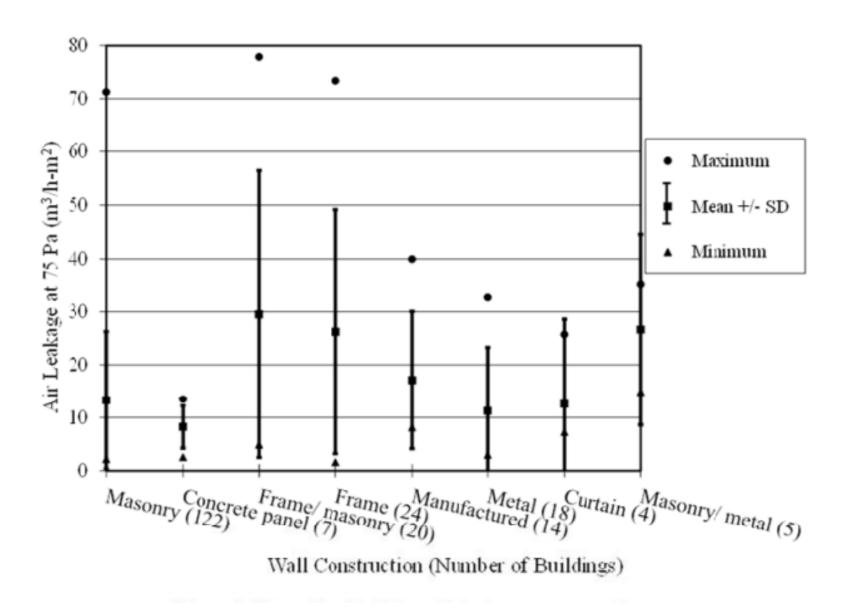


Observations (Emmerish and Persily, 2014)

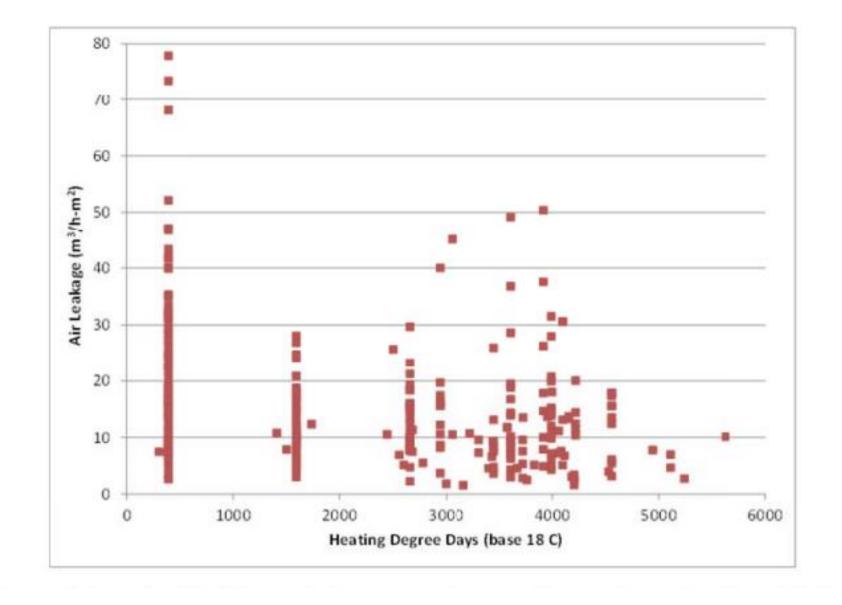
- Average leakage rate of $7.45 \times 10^{-4} \text{ m}^2/\text{m}^2$ for all 387 buildings: "loose" to "very loose" categories.
- Except for data collected in Washington [Anis, et al., 2013]
 - all maximum leakage rates > leakage rate for "very loose" category



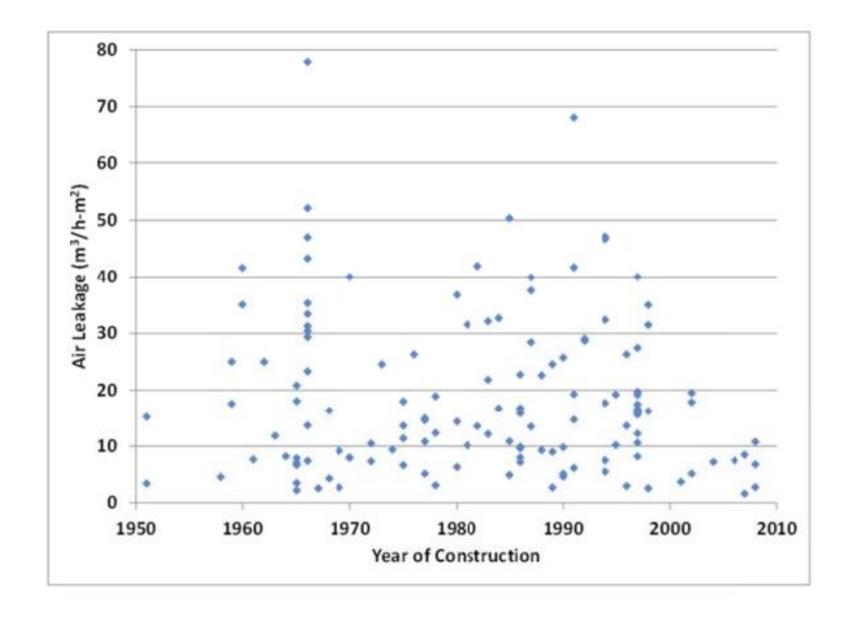
Leakage Rate vs. Building Height



Leakage Rate vs. Floor Area



Leakage Rate vs. Composition of Exterior Wall



Leakage Rate vs. Climatic Conditions

Leakage Rate vs Year of Construction

Summary

- Informed assumptions about leakage rates can yield improved fan capacity selections and reduce the potential overdesign for fans and ductwork in stairwell pressurization systems
- Previous studies have found that building envelope leakage rates were either "loose" or "very loose".
- Trends in the Emmerish and Persily database of leakage rates of exterior walls are present for five characteristics of buildings:
 - 1. Height
 - 2. Floor area
 - 3. Age
 - 4. Composition of exterior wall
 - 5. Climatic condition

Questions?

Jim Milke jmilke@fireriskalliance.com

