THUI'IDE%‘HEAD

403 Poyntz Ave., Suite B

Manhattan, KS 66502, USA

Phone: +1-785-770-8511

Email: support@thunderheadeng.com
Web: https://www.thunderheadeng.com

Pathfinder

Pathfinder Scripting API
Manual

Version: 2023-2

mailto:support@thunderheadeng.com
https://www.thunderheadeng.com

Table of Contents

1.

Getting Started

2. Introduction

. Core API

3.1. Simulation Control
3.2. Geometry

3.3. Agents

3.4. Input/Output

. Extended API

5. Examples

5.1. Door Open/Close
5.2. Control Doors by Region Count
5.3. Print Interval Output

© 9 O U R W .

S Y
- o o o

Pathfinder - Monte Carlo User Manual

Chapter 1. Getting Started

Pathfinder scripts can be edited within the Pathfinder user interface and are stored with other
model data inside the save file (PTH). Once a script has been added to a model, it will
automatically be used any time anyone runs that model.

Since this is an experimental feature, a flag must be set to enable the script editor. This flag can be
set by either running Pathfinder from a console window (recommended when creating/debugging
scripts) or by editing the Windows Start Menu shortcuts.

To enable the script editor, it is necessary to add the following VM argument when running
Pathfinder:

-Dex_enable_scripting

The above form of the argument can be used as-in when part of a batch file (e.g. monte carlo
runs), but requires a modification when running Pathfinder as part of a shortcut or from the
command line:

-J-Dex_enable_scripting
The -J instructs the wrapper executable to unpack the argument as a VM parameter.

For example:

pathfinder.exe -J-Dex_enable_scripting

Once this flag has been enabled, an option will be added to the Model : Model » Edit Custom
Scripts menu If the script editor is not enabled, the presence of custom scripts will trigger a
warning when loading the PTH file.

When working with scripts, please keep in mind the following details:
 Scripts run when the simulation is initialized, before any movement. To run code after
initialization, you must add callback functions.
 Scripting is not compatible with simulation restart.

 All scripts share the same global scope, creating a situation that shares the same advantages
and disadvantages with JavaScript development for web browsers. Namely, you can
conveniently create library classes that are shared across multiple script blocks as defined in
Pathfinder, but you can just as easily overwrite important variables by accident. JavaScript
namespacing is the topic to learn more about if you are having trouble with the latter case.

* When finding an element of the model by name, if you have the setting File » Preferences...,
General tab, Results section, Include Group Names in Output option checked, then you

1 Chapter 1. Getting Started

Pathfinder - Monte Carlo User Manual

must use the full name including the group name(s) for the identification string. For example,
a door named Center Door, in the Floor 0.2 m group, would be referred to as the string Floor
0.0 m->Center Door, where groups and objects are separated by -> characters.

Chapter 1. Getting Started

Pathfinder - Monte Carlo User Manual

Chapter 2. Introduction

The Pathfinder API provides low-level access to the internals of a Pathfinder simulation.

It consists of four modules:

Name Object Description

Simulation Control api.simctl.v1 Simulation management and
callbacks

Geometry api.geometry.v1 Access simulation objects like

doors and rooms

Agents api.agents.v1 Access agent/occupant data
during the simulation

Input/Outout api.io.v1 Access the out/err/in streams
for I/0.

The v1 on the end of the object name gives access to a specific version of that API and will allow
us to keep legacy scripts operational if we introduce API-breaking changes.

The following convenience variables will be used in all examples in this documentation.

var sim = api.simctl.v1;
var geom = api.geometry.v1;
var agents = api.agents.v1;
var io = api.io.v1;

3 Chapter 2. Introduction

Pathfinder - Monte Carlo User Manual

Chapter 3. Core API

The Core API describes operations that are explicitly supported by Pathfinder’s API.

3.1. Simulation Control

The Simulation Control API makes it possible to register callbacks to execute code during the

simulation.

var sim = api.simctl.v1;

3.1.1. onUpdate(Function(t))

Register a callback function. It will be invoked once on each simulation timestep.

The function accepts one parameter:

Parameter Type Description

t double Current simulation time

sim.onUpdate(function (t) {

// do this every time step

Il

3.1.2. onExit(Function(t))

Register a callback function. It will be invoked once at the end of the simulation.

sim.onExit(function () {

// do this once after the simulation has ended
// recommended for closing PrintStream

Il

Chapter 3. Core API

Pathfinder - Monte Carlo User Manual

3.2. Geometry

The Geometry API provides methods to access geometry objects like doors, rooms, and
measurement regions. In addition, methods are provided to open/close doors and change the
direction that agents can move through doors.

The geometry methods use the objects of type ANode which is a class that includes both doors and
rooms and type Region which represents a measurement region.

var geom = api.geometry.v1;

3.2.1. find(String)

Find a single door or room by name.

var door = geom.find("Door to Atrium");

3.2.2. findAll(String)

Find all named doors or rooms that match a regular expression.

Additional information on regular expressions in Java see java regex.

var doors = geom.findAl11("Door to Atrium");

3.2.3. close(ANode)

Close a door.

geom.close(door);

3.2.4. open(ANode)

Open a door.

geom.open(door);

5 Chapter 3. Core API

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Pathfinder - Monte Carlo User Manual

3.2.5. setDoorDir(ANode, String)

Set the allowed direction of travel through a door.

//Set the door direction to allow travel in both directions.
geom.setDoorDir(door, "");

//Set the door direction closest to the +X axis.
geom.setDoorDir(door, "+x");

//Set the door direction closest to the vector (1, -.2)
geom.setDoorDir(door, "1 -.2");

3.3. Agents

The Agents API provides methods to access agents during the simulation.

var agents = api.agents.v1;

3.3.1. find(String): OccAgent

Find a single agent by name.

var agent = agents.find("00028");

3.3.2. findAll(Region): List<OccAgent>

Find all agents whose center point is within a measurement region.

var regionA = geom.find("Region-A");
var agentsInRegionA = agents.findAll(regionA);

3.3.3. findAll(String): List<OccAgent>

Find all named agents that match a regular expression.

Additional information on regular expressions in Java see java regex.

var agentsNamedStaff = agents.findAll("staff-7?");

Chapter 3. Core API

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

Pathfinder - Monte Carlo User Manual

3.3.4. getAllAgentsEver(): List<OccAgent>

Returns a list of all agents that have ever been in the simulation, including those that have exited.

var agents = agents.getAllAgentsEver();

3.4. Input/Output

api.io.v1

The Input/Output API provides methods to write to and read from the simulation input and output
streams.

var io = api.io.v1;

3.4.1. openPrintStream(String): PrintStream
This method can be used to open a PrintStream to a file in the current simulation’s working

directory. Streams should be closed when the simulation exits to prevent file locking issues.

var fileout = openPrintStream("myfile.tsv");

3.4.2. out

Simulation standard output stream. Text will appear alongside other console output.

io.out.println("message");

3.4.3. err

Simulation standard error stream. Text will appear alongside other console output and may be
colored red depending on the editor.

io.err.println("message");

3.4.4.1n

Simulation standard input stream. Possibly a way to collect user input from the console or piping
together applications...?

7 Chapter 3. Core API

Pathfinder - Monte Carlo User Manual

(TBD)

Chapter 3. Core API

Pathfinder - Monte Carlo User Manual

Chapter 4. Extended API

The Core API describes operations that are explicitly supported by Pathfinder’s API, but it’s
possible to access a much wider range of objects. An example of a common situation is when
dealing with the findA11() methods that return an instance of java.util.List. Another example is
the OccAgent object that is returned by the find() method. In addition, you can create arbitrary
instances of objects using the APL

In general:

» If you are trying to deal with objects that you receive as a result from a Core API function,
there should be some guidance in that section of the Core API documentation.

» If you are interested in creating an instance of a class from scratch, the general pattern is to
use the Java.type() method to look up a type definition and then use that type to create new
instances.

Create a file using the Java platform library.

var PSType = Java.type("java.io.PrintStream");
var fileStream = new PSType("myfile.txt");

fileStream.println("Hello");

filestream.close();
Basically, you can write any program you want by using the extended API because it encompasses
both JavaScript and the Java platform. The details of how really dive into these is beyond the

scope of this document, but if you have specific questions or requests for code examples, please
send us an email.

9 Chapter 4. Extended API

Pathfinder - Monte Carlo User Manual

Chapter 5. Examples

The following examples combine elements of the script APIL.

5.1. Door Open/Close

This example finds a specific door by name. The door will operate on a 40 second cycle. For the
first 30 seconds the door will be closed. Then open for 10 seconds. Then the cycle will repeat.

This example makes use of the modulus (%) operator which performs a division and gives the
remainder rather than the quotient.

var sim = api.simctl.v1;
var geom = api.geometry.vl;

var door = geom.find("Station Entrance");
sim.onUpdate(function (t) {

var tc = t % 40.0;
if (tc < 30) {
geom.close(door);

}

else

{

geom.open(door);
}
19K

5.2. Control Doors by Region Count

This example opens and closes doors based on the number of agents that are standing inside
measurement regions.

Chapter 5. Examples

10

var
var
var

var
var

var
var

sim.

1

sim = api.simctl.v1;
geom = api.geometry.v1;
agents = api.agents.vl;

rA = geom.find("Region A");
doorToA = geom.find("Door to Zone A");

rB = geom.find("Region B");
doorToB = geom.find("Door to Crossroad");

onUpdate(function (t) {

var agentsInRegionA = agents.findAll(rA);
if (agentsInRegionA.size() > 100)
{

geom.close(doorToA);

}

else

{

geom.open(doorToA);

}

var agentsInRegionB = agents.findA11(rB);
if (agentsInRegionB.size() > 100)
{

geom.close(doorToB);

}

else

{

geom.open(doorToB);

}

5.3. Print Interval Output

Print output to the console at 10 second intervals.

11

Pathfinder - Monte Carlo User Manual

Chapter 5. Examples

Pathfinder - Monte Carlo User Manual

var sim = api.simctl.v1;
var geom = api.geometry.v1l;
var io = api.io.v1;

var rA
var rB

geom.find("Region A");
geom.find("Region B");

var dtOutput = 10.0;
var nextOutput = 0.0;

// header
jo.out.println("Time\tA\tB");

sim.onUpdate(function (t) {

if (nextOutput <= t)

{
var nA = agents.findA11(rA).size();
var nB = agents.findA11(rB).size();

// data rows
jo.out.println(t +"\t" + nA +"\t" + nB);
nextOutput += dtOutput;

b

Chapter 5. Examples

12

	Pathfinder - Monte Carlo User Manual
	Table of Contents
	Chapter 1. Getting Started
	Chapter 2. Introduction
	Chapter 3. Core API
	3.1. Simulation Control
	3.2. Geometry
	3.3. Agents
	3.4. Input/Output

	Chapter 4. Extended API
	Chapter 5. Examples
	5.1. Door Open/Close
	5.2. Control Doors by Region Count
	5.3. Print Interval Output

